Suppr超能文献

基于迁移学习的多参数 MRI 术前预测乳腺癌 Ki-67 状态。

Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning.

机构信息

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd road, Guangzhou 510080 Guangdong, PR China; Graduate College, Shantou University Medical College, Shantou, Guangdong, PR China.

The School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, PR China.

出版信息

Acad Radiol. 2021 Feb;28(2):e44-e53. doi: 10.1016/j.acra.2020.02.006. Epub 2020 Apr 8.

Abstract

RATIONALE AND OBJECTIVES

Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI).

MATERIALS AND METHODS

Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models.

RESULTS

The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01).

CONCLUSION

In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis.

摘要

背景与目的

Ki-67 是乳腺癌最重要的生物标志物之一,传统上通过免疫组织化学进行侵袭性测量。本研究使用多参数磁共振成像(mp-MRI),基于深度学习的放射组学模型建立了用于术前预测 Ki-67 状态的模型。

材料与方法

回顾性纳入 328 例符合条件的患者(训练数据集,n=230;时间验证数据集,n=98)。从 T2 加权成像(T2WI)、弥散加权成像(DWI)和对比增强 T1 加权成像(T1+C)提取深度学习成像特征。基于个体三个 MR 序列及其组合(即 mp-MRI)的转移学习技术构建了四个特征集。多层感知机分类器用于最终预测 Ki-67 状态。采用 Mann-Whitney U 检验比较各模型的预测性能。

结果

基于 T2WI、T1+C、DWI 和 mp-MRI 的模型在训练数据集的 AUC 分别为 0.727、0.873、0.674 和 0.888,在验证数据集的 AUC 分别为 0.706、0.829、0.643 和 0.875。mp-MRI 分类模型在 AUC 值上的预测性能明显优于各单序列模型(均 P<0.01)。

结论

在临床实践中,通过使用先进的深度学习方法从常规扫描序列获得的 mp-MRI 图像中提取乳腺癌特定的结构和功能特征,可以提供一种非侵入性方法来提高术前预测 Ki-67 状态的放射组学性能。这可以进一步实现个性化医疗和计算机辅助诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验