Sengupta Debabrata, Sandoval-Pauker Christian, Schueller Emily, Encerrado-Manriquez Angela M, Metta-Magaña Alejandro, Lee Wen-Yee, Seshadri Ram, Pinter Balazs, Fortier Skye
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.
Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile.
J Am Chem Soc. 2020 May 6;142(18):8233-8242. doi: 10.1021/jacs.0c00291. Epub 2020 Apr 23.
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)][(guan)Co(N)] (guan = [(BuCN)C(NDipp)], Dipp = 2,6-diisopropylphenyl) () in THF cleanly forms the binuclear cobalt nitride Na(THF){(guan)Co(N)} (). Compound represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a Co═N═Co canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other group 9 bridging nitride complexes, no radical character is detected at the bridging N atom of . Indeed, is unreactive toward weak C-H donors and even cocrystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give ·CHD as a room temperature stable product. Notably, addition of pyridine to or photolyzed solutions of [(guan)Co(N)(py)] () leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/Co(III) bridged imido species [(guan)Co(py)](guan)Co(μ-N) () formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ∼ 100 kcal/mol). Kinetic rate analysis of the formation of in the presence of CH or CD gives a KIE = 2.5 ± 0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing benzene/pyridine solutions of under H and D atmospheres (150 psi), which leads to the exclusive formation of the bis(imido) complexes [(guan)Co(μ-NH)] () and [(guan)Co(μ-ND)] (), respectively, as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d metal nitrides while providing entryway into C-H activation pathways.
双(叠氮)钴(II)配合物[Na(THF)][(guan)Co(N)](guan = [(BuCN)C(NDipp)],Dipp = 2,6 - 二异丙基苯基)()在四氢呋喃(THF)中进行室温光解,可顺利形成双核钴氮化物Na(THF){[(guan)Co(N)](μ - N)}()。化合物代表了可分离的双金属钴氮化物配合物的首个实例,并且已通过光谱、磁性和计算分析对其进行了全面表征。密度泛函理论支持一种Co═N═Co的典型形式,其中钴中心与氮化物原子之间存在显著的π键。与其他第9族桥联氮化物配合物不同,在的桥联N原子处未检测到自由基特征。实际上,对弱C - H供体无反应,甚至在其晶体学晶胞中与环己二烯(CHD)分子共结晶,得到·CHD作为室温稳定产物。值得注意的是,向或[(guan)Co(N)(py)]()的光解溶液中加入吡啶,会通过氮化物单元的活化导致不稳定,从而形成由强C - H键(BDE ∼ 100 kcal/mol)的分子间氢原子转移(HAA)形成的混合价Co(II)/Co(III)桥联亚氨基物种[(guan)Co(py)][(guan)Co](μ - NH)(μ - N)()。在CH或CD存在下形成的动力学速率分析给出KIE = 2.5 ± 0.1,支持HAA形成途径。通过在H₂和D₂气氛(150 psi)下对的苯/吡啶溶液进行光解,进一步探究了我们体系的反应性,这导致分别独家形成双(亚氨基)配合物[(guan)Co(μ - NH)]()和[(guan)Co(μ - ND)](),这是二氢活化的结果。这些结果为晚期3d金属氮化物的化学性质和电子结构提供了独特的见解,同时为C - H活化途径提供了切入点。