Suppr超能文献

一种用于预测替代性宏观经济未来情景下局部森林碳效应的土地利用与资源分配(LURA)建模系统。

A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO effects of alternative macroeconomic futures.

作者信息

Latta Gregory S, Baker Justin S, Ohrel Sara

机构信息

University of Idaho, United States.

RTI International, United States.

出版信息

For Policy Econ. 2017 Nov 25;87:35-48. doi: 10.1016/j.forpol.2017.10.003.

Abstract

The United States has recently set ambitious national goals for greenhouse gas (GHG) reductions over the coming decades. A portion of these reductions are based on expected sequestration and storage contributions from land use, land use change, and forestry (LULUCF). Significant uncertainty exists in future forest markets and thus the potential LULUCF contribution to US GHG reduction goals. This study seeks to inform the discussion by modeling US forest GHG accounts per different simulated demand scenarios across a grid of over 130,000 USDA Forest Service Forest Inventory and Analysis (FIA) forestland plots over the conterminous United States. This spatially disaggregated future supply is based on empirical yield functions for log volume, biomass and carbon. Demand data is based on a spatial database of over 2300 forest product manufacturing facilities representing 11 intermediate and 13 final solid and pulpwood products. Transportation costs are derived from fuel prices and the locations of FIA plot from which a log is harvested and mill or port destination. Trade between mills in intermediate products such as sawmill residues or planer shavings is also captured within the model formulation. The resulting partial spatial equilibrium model of the US forest sector is solved annually for the period 2015-2035 with demand shifted by energy prices and macroeconomic indicators from the US EIA's Annual Energy Outlook for a Reference, Low Economic Growth, and High Economic Growth case. For each macroeconomic scenario simulated, figures showing historic and scenario-specific live tree carnon emissions and sequestration are generated. Maps of the spatial allocation of both forest harvesting and related carbon fluxes are presented at the National level and detail is given for both regions and ownerships.

摘要

美国最近为未来几十年设定了雄心勃勃的温室气体减排国家目标。其中一部分减排目标是基于土地利用、土地利用变化和林业(LULUCF)预期的碳固存和存储贡献。未来森林市场存在重大不确定性,因此LULUCF对美国温室气体减排目标的潜在贡献也存在不确定性。本研究旨在通过对美国本土超过130,000个美国农业部森林服务局森林资源清查与分析(FIA)林地地块网格上不同模拟需求情景下的美国森林温室气体账户进行建模,为相关讨论提供参考。这种空间上细分的未来供应基于原木体积、生物量和碳的经验产量函数。需求数据基于一个包含2300多个林产品制造设施的空间数据库,这些设施代表11种中间产品以及13种最终固体和纸浆木材产品。运输成本源自燃料价格以及采伐原木的FIA地块位置与工厂或港口目的地的位置。模型公式中还考虑了锯木厂残渣或刨花等中间产品在工厂之间的贸易。由此得出的美国森林部门部分空间均衡模型在2015 - 2035年期间每年求解一次,需求根据美国能源信息署《年度能源展望》中参考、低经济增长和高经济增长情景下的能源价格和宏观经济指标进行调整。对于每个模拟的宏观经济情景,都会生成显示历史和特定情景下活立木碳排放量和碳固存情况的图表。在国家层面展示了森林采伐和相关碳通量的空间分配地图,并给出了区域和所有权的详细信息。

相似文献

7
Regional estimation of current and future forest biomass.当前及未来森林生物量的区域估算。
Environ Pollut. 2002;116 Suppl 1:S7-16. doi: 10.1016/s0269-7491(01)00241-x.

引用本文的文献

1
Investing in U.S. forests to mitigate climate change.投资美国森林以缓解气候变化。
Carbon Balance Manag. 2025 Mar 10;20(1):4. doi: 10.1186/s13021-025-00292-6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验