Suppr超能文献

用于生存结果的深度学习。

Deep learning for survival outcomes.

作者信息

Steingrimsson Jon Arni, Morrison Samantha

机构信息

Department of Biostatistics, Brown University, Providence, Rhode Island, USA.

出版信息

Stat Med. 2020 Jul 30;39(17):2339-2349. doi: 10.1002/sim.8542. Epub 2020 Apr 13.

Abstract

Deep learning is a class of machine learning algorithms that are popular for building risk prediction models. When observations are censored, the outcomes are only partially observed and standard deep learning algorithms cannot be directly applied. We develop a new class of deep learning algorithms for outcomes that are potentially censored. To account for censoring, the unobservable loss function used in the absence of censoring is replaced by a censoring unbiased transformation. The resulting class of algorithms can be used to estimate both survival probabilities and restricted mean survival. We show how the deep learning algorithms can be implemented by adapting software for uncensored data by using a form of response transformation. We provide comparisons of the proposed deep learning algorithms to existing risk prediction algorithms for predicting survival probabilities and restricted mean survival through both simulated datasets and analysis of data from breast cancer patients.

摘要

深度学习是一类机器学习算法,在构建风险预测模型方面很受欢迎。当观测值被删失时,结果只是部分可观测的,标准的深度学习算法不能直接应用。我们针对可能被删失的结果开发了一类新的深度学习算法。为了考虑删失情况,在无删失情况下使用的不可观测损失函数被一个删失无偏变换所取代。由此产生的算法类别可用于估计生存概率和受限平均生存时间。我们展示了如何通过使用一种响应变换形式来改编无删失数据的软件,从而实现深度学习算法。我们通过模拟数据集以及对乳腺癌患者数据的分析,将所提出的深度学习算法与现有的风险预测算法进行比较,以预测生存概率和受限平均生存时间。

相似文献

1
Deep learning for survival outcomes.用于生存结果的深度学习。
Stat Med. 2020 Jul 30;39(17):2339-2349. doi: 10.1002/sim.8542. Epub 2020 Apr 13.
2
Censoring Unbiased Regression Trees and Ensembles.审查无偏回归树与集成方法
J Am Stat Assoc. 2019;114(525):370-383. doi: 10.1080/01621459.2017.1407775. Epub 2018 Jul 9.
7
8
Impact of censoring on learning Bayesian networks in survival modelling.生存模型中删失数据对贝叶斯网络学习的影响。
Artif Intell Med. 2009 Nov;47(3):199-217. doi: 10.1016/j.artmed.2009.08.001. Epub 2009 Oct 14.
10
A doubly robust censoring unbiased transformation.一种双重稳健的删失无偏变换。
Int J Biostat. 2007;3(1):Article 4. doi: 10.2202/1557-4679.1052.

引用本文的文献

2
CTIVA: Censored time interval variable analysis.CTIVA:掩蔽时间间隔变量分析。
PLoS One. 2023 Nov 16;18(11):e0294513. doi: 10.1371/journal.pone.0294513. eCollection 2023.
5
Survival analysis using deep learning with medical imaging.基于医学影像的深度学习生存分析。
Int J Biostat. 2023 Jun 14;20(1):1-12. doi: 10.1515/ijb-2022-0113. eCollection 2024 May 1.
8
Inverse-Weighted Survival Games.逆加权生存博弈
Adv Neural Inf Process Syst. 2021 Dec;34:2160-2172.

本文引用的文献

1
2
Censoring Unbiased Regression Trees and Ensembles.审查无偏回归树与集成方法
J Am Stat Assoc. 2019;114(525):370-383. doi: 10.1080/01621459.2017.1407775. Epub 2018 Jul 9.
4
Predicting cancer outcomes from histology and genomics using convolutional networks.使用卷积网络从组织学和基因组学预测癌症结局。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.
6
Doubly robust survival trees.双重稳健生存树
Stat Med. 2016 Sep 10;35(20):3595-612. doi: 10.1002/sim.6949. Epub 2016 Mar 31.
7
ESTIMATING MEAN SURVIVAL TIME: WHEN IS IT POSSIBLE?估计平均生存时间:何时可行?
Scand Stat Theory Appl. 2015 Jun 1;42(2):397-413. doi: 10.1111/sjos.12112.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
A doubly robust censoring unbiased transformation.一种双重稳健的删失无偏变换。
Int J Biostat. 2007;3(1):Article 4. doi: 10.2202/1557-4679.1052.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验