Suppr超能文献

逆加权生存博弈

Inverse-Weighted Survival Games.

作者信息

Han Xintian, Goldstein Mark, Puli Aahlad, Wies Thomas, Perotte Adler J, Ranganath Rajesh

机构信息

NYU.

Columbia University.

出版信息

Adv Neural Inf Process Syst. 2021 Dec;34:2160-2172.

Abstract

Deep models trained through maximum likelihood have achieved state-of-the-art results for survival analysis. Despite this training scheme, practitioners evaluate models under other criteria, such as binary classification losses at a chosen set of time horizons, e.g. Brier score (BS) and Bernoulli log likelihood (BLL). Models trained with maximum likelihood may have poor BS or BLL since maximum likelihood does not directly optimize these criteria. Directly optimizing criteria like BS requires inverse-weighting by the censoring distribution. However, estimating the censoring model under these metrics requires inverse-weighting by the failure distribution. The objective for each model requires the other, but neither are known. To resolve this dilemma, we introduce . In these games, objectives for each model are built from re-weighted estimates featuring the other model, where the latter is held fixed during training. When the loss is proper, we show that the games always have the true failure and censoring distributions as a stationary point. This means models in the game do not leave the correct distributions once reached. We construct one case where this stationary point is unique. We show that these games optimize BS on simulations and then apply these principles on real world cancer and critically-ill patient data.

摘要

通过最大似然法训练的深度模型在生存分析中取得了领先成果。尽管采用了这种训练方案,但从业者会根据其他标准评估模型,例如在选定的一组时间范围内的二元分类损失,例如布里尔评分(BS)和伯努利对数似然(BLL)。由于最大似然法并不直接优化这些标准,因此用最大似然法训练的模型可能具有较差的BS或BLL。直接优化诸如BS之类的标准需要按删失分布进行逆加权。然而,在这些指标下估计删失模型需要按失败分布进行逆加权。每个模型的目标都需要另一个模型的信息,但两者均未知。为了解决这一困境,我们引入了……在这些博弈中,每个模型的目标都是基于以另一个模型为特征的重新加权估计构建的,其中后者在训练期间保持固定。当损失是恰当的时候,我们表明这些博弈总是以真实的失败和删失分布作为一个稳定点。这意味着博弈中的模型一旦达到就不会偏离正确的分布。我们构建了一个这种稳定点唯一的案例。我们表明这些博弈在模拟中优化了BS,然后将这些原理应用于真实世界的癌症和重症患者数据。

相似文献

1
Inverse-Weighted Survival Games.逆加权生存博弈
Adv Neural Inf Process Syst. 2021 Dec;34:2160-2172.
5
Selection Bias Due to Loss to Follow Up in Cohort Studies.队列研究中失访导致的选择偏倚。
Epidemiology. 2016 Jan;27(1):91-7. doi: 10.1097/EDE.0000000000000409.

本文引用的文献

1
Continuous and discrete-time survival prediction with neural networks.神经网络的连续时间和离散时间生存预测。
Lifetime Data Anal. 2021 Oct;27(4):710-736. doi: 10.1007/s10985-021-09532-6. Epub 2021 Oct 7.
4
Deep learning for survival outcomes.用于生存结果的深度学习。
Stat Med. 2020 Jul 30;39(17):2339-2349. doi: 10.1002/sim.8542. Epub 2020 Apr 13.
8
Tests of calibration and goodness-of-fit in the survival setting.生存环境下的校准和拟合优度检验。
Stat Med. 2015 May 10;34(10):1659-80. doi: 10.1002/sim.6428. Epub 2015 Feb 11.
10
Concordance for prognostic models with competing risks.具有竞争风险的预后模型的一致性
Biostatistics. 2014 Jul;15(3):526-39. doi: 10.1093/biostatistics/kxt059. Epub 2014 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验