Suppr超能文献

使用卷积网络从组织学和基因组学预测癌症结局。

Predicting cancer outcomes from histology and genomics using convolutional networks.

机构信息

Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322.

Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322.

出版信息

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.

Abstract

Cancer histology reflects underlying molecular processes and disease progression and contains rich phenotypic information that is predictive of patient outcomes. In this study, we show a computational approach for learning patient outcomes from digital pathology images using deep learning to combine the power of adaptive machine learning algorithms with traditional survival models. We illustrate how these survival convolutional neural networks (SCNNs) can integrate information from both histology images and genomic biomarkers into a single unified framework to predict time-to-event outcomes and show prediction accuracy that surpasses the current clinical paradigm for predicting the overall survival of patients diagnosed with glioma. We use statistical sampling techniques to address challenges in learning survival from histology images, including tumor heterogeneity and the need for large training cohorts. We also provide insights into the prediction mechanisms of SCNNs, using heat map visualization to show that SCNNs recognize important structures, like microvascular proliferation, that are related to prognosis and that are used by pathologists in grading. These results highlight the emerging role of deep learning in precision medicine and suggest an expanding utility for computational analysis of histology in the future practice of pathology.

摘要

癌症组织学反映了潜在的分子过程和疾病进展,并包含丰富的预测患者预后的表型信息。在这项研究中,我们展示了一种使用深度学习从数字病理学图像中学习患者预后的计算方法,以将自适应机器学习算法的功能与传统生存模型相结合。我们说明了这些生存卷积神经网络(SCNN)如何将来自组织学图像和基因组生物标志物的信息集成到一个单一的统一框架中,以预测时间事件的结果,并展示了超过当前用于预测诊断为胶质母细胞瘤的患者总生存期的临床范例的预测准确性。我们使用统计抽样技术来解决从组织学图像中学习生存的挑战,包括肿瘤异质性和对大型训练队列的需求。我们还深入了解了 SCNN 的预测机制,使用热图可视化来显示 SCNN 识别与预后相关的重要结构,如微血管增生,这是病理学家在分级中使用的。这些结果突出了深度学习在精准医学中的新兴作用,并表明在未来的病理学实践中,对组织学的计算分析具有广泛的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0547/5879673/d262abdd1025/pnas.1717139115fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验