BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA.
The San Diego Center for Systems Biology, La Jolla, CA, USA.
Nat Microbiol. 2020 May;5(5):697-705. doi: 10.1038/s41564-020-0686-0. Epub 2020 Apr 13.
Rapid advances in cellular engineering have positioned synthetic biology to address therapeutic and industrial problems, but a substantial obstacle is the myriad of unanticipated cellular responses in heterogeneous real-world environments such as the gut, solid tumours, bioreactors or soil. Complex interactions between the environment and cells often arise through non-uniform nutrient availability, which generates bidirectional coupling as cells both adjust to and modify their local environment through phenotypic differentiation. Although synthetic spatial gene expression patterns have been explored under homogeneous conditions, the mutual interaction of gene circuits, growth phenotype and the environment remains a challenge. Here, we design gene circuits that sense and control phenotypic structure in microcolonies containing both growing and dormant bacteria. We implement structure modulation by coupling different downstream modules to a tunable sensor that leverages Escherichia coli's stress response and is activated on growth arrest. One is an actuator module that slows growth and thereby alters nutrient gradients. Environmental feedback in this circuit generates robust cycling between growth and dormancy in the interior of the colony, as predicted by a spatiotemporal computational model. We also use the sensor to drive an inducible gating module for selective gene expression in non-dividing cells, which allows us to radically alter population structure by eliminating the dormant phenotype with a 'stress-gated lysis circuit'. Our results establish a strategy to leverage and control microbial colony structure for synthetic biology applications in complex environments.
细胞工程的快速发展使合成生物学能够解决治疗和工业问题,但一个实质性的障碍是在肠道、实体瘤、生物反应器或土壤等异质真实环境中存在无数意想不到的细胞反应。环境和细胞之间的复杂相互作用通常是通过不均匀的营养供应产生的,这会产生双向耦合,因为细胞通过表型分化来调整和改变其局部环境。尽管已经在同质条件下探索了合成的空间基因表达模式,但基因电路、生长表型和环境之间的相互作用仍然是一个挑战。在这里,我们设计了能够感知和控制含有生长和休眠细菌的微菌落中表型结构的基因电路。我们通过将不同的下游模块耦合到一个可调传感器来实现结构调制,该传感器利用大肠杆菌的应激反应,并在生长停止时被激活。一个是执行器模块,它可以减缓生长速度,从而改变营养梯度。这个电路中的环境反馈在菌落内部产生了生长和休眠之间的稳健循环,正如时空计算模型所预测的那样。我们还使用传感器来驱动诱导门控模块,以在非分裂细胞中进行可诱导的基因表达,这使得我们可以通过使用“应激门控裂解电路”消除休眠表型,从而从根本上改变群体结构。我们的结果为在复杂环境中利用和控制微生物菌落结构的合成生物学应用建立了一种策略。