Suppr超能文献

纵向振动心冲击图和模式识别检测卧床时的心率和呼吸率。

Bed-Embedded Heart and Respiration Rates Detection by Longitudinal Ballistocardiography and Pattern Recognition.

机构信息

Medical and Mechanical Engineering Faculty, and Institute for Microsystem Technology (iMST), Furtwangen University, 78120 Furtwangen, Germany.

出版信息

Sensors (Basel). 2019 Mar 25;19(6):1451. doi: 10.3390/s19061451.

Abstract

In this work, a low-cost, off-the-shelf load cell is installed on a typical hospital bed and implemented to measure the longitudinal ballistocardiogram (BCG) in order to evaluate its utility for successful contactless monitoring of heart and respiration rates. The major focus is placed on the beat-to-beat heart rate monitoring task, for which an unsupervised machine learning algorithm is employed, while its performance is compared to an electrocardiogram (ECG) signal that serves as a reference. The algorithm is a modified version of a previously published one, which had successfully detected 49.2% of recorded heartbeats. However, the presented system was tested with seven volunteers and four different lying positions, and obtained an improved overall detection rate of 83.9%.

摘要

在这项工作中,在典型的医院病床上安装了一个低成本、现成的称重传感器,并实施了该传感器来测量纵向心力描记图(BCG),以评估其在成功进行非接触式心率和呼吸率监测方面的实用性。主要重点放在逐拍心率监测任务上,为此使用了一种无监督机器学习算法,并将其性能与作为参考的心电图(ECG)信号进行比较。该算法是之前发表的算法的修改版本,该算法已成功检测到 49.2%的记录心跳。然而,所提出的系统经过了七名志愿者和四种不同的卧位测试,总体检测率提高到了 83.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0402/6470700/ef996982ce42/sensors-19-01451-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验