Holste Gregory, Lin Mingquan, Zhou Ruiwen, Wang Fei, Liu Lei, Yan Qi, Van Tassel Sarah H, Kovacs Kyle, Chew Emily Y, Lu Zhiyong, Wang Zhangyang, Peng Yifan
Department of Population Health Sciences, Weill Cornell Medicine, NY, USA.
Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA.
ArXiv. 2024 Jul 30:arXiv:2405.08780v2.
Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence , neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing a disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.
深度学习已在医学影像的自动诊断方面取得突破,在眼科领域有许多成功应用。然而,标准的医学图像分类方法仅评估疾病的存在情况,而忽略了纵向成像这一常见的临床场景。对于年龄相关性黄斑变性(AMD)和原发性开角型青光眼(POAG)等进展缓慢的眼部疾病,患者需要随时间进行多次成像以追踪疾病进展,预测疾病发展的未来风险对于合理规划治疗至关重要。我们提出的用于生存分析的纵向Transformer(LTSA)能够从纵向医学影像中实现动态疾病预后,根据在长且不规则时间段内拍摄的眼底摄影图像序列对疾病发生时间进行建模。使用来自年龄相关性眼病研究(AREDS)和高眼压治疗研究(OHTS)的纵向成像数据,在19/20次关于晚期AMD预后的直接比较以及18/20次关于POAG预后的比较中,LTSA显著优于单图像基线。时间注意力分析还表明,虽然最近的图像通常最具影响力,但先前的成像仍具有额外的预后价值。