Suppr超能文献

利用基于Transformer的序列建模技术,借助纵向医学影像的力量来预测眼部疾病的预后。

Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling.

作者信息

Holste Gregory, Lin Mingquan, Zhou Ruiwen, Wang Fei, Liu Lei, Yan Qi, Van Tassel Sarah H, Kovacs Kyle, Chew Emily Y, Lu Zhiyong, Wang Zhangyang, Peng Yifan

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, NY, USA.

Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA.

出版信息

ArXiv. 2024 Jul 30:arXiv:2405.08780v2.

Abstract

Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence , neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing a disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.

摘要

深度学习已在医学影像的自动诊断方面取得突破,在眼科领域有许多成功应用。然而,标准的医学图像分类方法仅评估疾病的存在情况,而忽略了纵向成像这一常见的临床场景。对于年龄相关性黄斑变性(AMD)和原发性开角型青光眼(POAG)等进展缓慢的眼部疾病,患者需要随时间进行多次成像以追踪疾病进展,预测疾病发展的未来风险对于合理规划治疗至关重要。我们提出的用于生存分析的纵向Transformer(LTSA)能够从纵向医学影像中实现动态疾病预后,根据在长且不规则时间段内拍摄的眼底摄影图像序列对疾病发生时间进行建模。使用来自年龄相关性眼病研究(AREDS)和高眼压治疗研究(OHTS)的纵向成像数据,在19/20次关于晚期AMD预后的直接比较以及18/20次关于POAG预后的比较中,LTSA显著优于单图像基线。时间注意力分析还表明,虽然最近的图像通常最具影响力,但先前的成像仍具有额外的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb2/11451643/300415ff5f6c/nihpp-2405.08780v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验