Suppr超能文献

利用深度学习通过纵向眼底图像预测年龄相关性黄斑变性的进展

Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning.

作者信息

Lee Junghwan, Wanyan Tingyi, Chen Qingyu, Keenan Tiarnan D L, Glicksberg Benjamin S, Chew Emily Y, Lu Zhiyong, Wang Fei, Peng Yifan

机构信息

Columbia University, New York, USA.

Weill Cornell Medicine, New York, USA.

出版信息

Mach Learn Med Imaging. 2022 Sep;13583:11-20. doi: 10.1007/978-3-031-21014-3_2. Epub 2022 Dec 16.

Abstract

Accurately predicting a patient's risk of progressing to late age-related macular degeneration (AMD) is difficult but crucial for personalized medicine. While existing risk prediction models for progression to late AMD are useful for triaging patients, none utilizes longitudinal color fundus photographs (CFPs) in a patient's history to estimate the risk of late AMD in a given subsequent time interval. In this work, we seek to evaluate how deep neural networks capture the sequential information in longitudinal CFPs and improve the prediction of 2-year and 5-year risk of progression to late AMD. Specifically, we proposed two deep learning models, CNN-LSTM and CNN-Transformer, which use a Long-Short Term Memory (LSTM) and a Transformer, respectively with convolutional neural networks (CNN), to capture the sequential information in longitudinal CFPs. We evaluated our models in comparison to baselines on the Age-Related Eye Disease Study, one of the largest longitudinal AMD cohorts with CFPs. The proposed models outperformed the baseline models that utilized only single-visit CFPs to predict the risk of late AMD (0.879 vs 0.868 in AUC for 2-year prediction, and 0.879 vs 0.862 for 5-year prediction). Further experiments showed that utilizing longitudinal CFPs over a longer time period was helpful for deep learning models to predict the risk of late AMD. We made the source code available at https://github.com/bionlplab/AMD_prognosis_mlmi2022 to catalyze future works that seek to develop deep learning models for late AMD prediction.

摘要

准确预测患者进展为晚期年龄相关性黄斑变性(AMD)的风险虽然困难,但对于个性化医疗至关重要。虽然现有的晚期AMD进展风险预测模型对患者分类有用,但没有一个模型利用患者病史中的纵向彩色眼底照片(CFP)来估计在给定后续时间间隔内晚期AMD的风险。在这项工作中,我们试图评估深度神经网络如何捕捉纵向CFP中的序列信息,并改善对进展为晚期AMD的2年和5年风险的预测。具体而言,我们提出了两种深度学习模型,即CNN-LSTM和CNN-Transformer,它们分别将长短期记忆(LSTM)和Transformer与卷积神经网络(CNN)结合使用,以捕捉纵向CFP中的序列信息。我们在年龄相关性眼病研究(Age-Related Eye Disease Study)这一最大的有CFP的纵向AMD队列之一上,将我们的模型与基线模型进行了比较评估。所提出的模型优于仅利用单次就诊CFP来预测晚期AMD风险的基线模型(2年预测的AUC中分别为0.879对0.868,5年预测中为0.879对0.862)。进一步的实验表明,在更长时间段内利用纵向CFP有助于深度学习模型预测晚期AMD的风险。我们将源代码发布在https://github.com/bionlplab/AMD_prognosis_mlmi2022,以推动未来旨在开发用于晚期AMD预测的深度学习模型的工作。

相似文献

引用本文的文献

本文引用的文献

9
Diabetes classification model based on boosting algorithms.基于提升算法的糖尿病分类模型。
BMC Bioinformatics. 2018 Mar 27;19(1):109. doi: 10.1186/s12859-018-2090-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验