Suppr超能文献

利用基于Transformer的序列建模技术,借助纵向医学影像的力量预测眼部疾病预后。

Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling.

作者信息

Holste Gregory, Lin Mingquan, Zhou Ruiwen, Wang Fei, Liu Lei, Yan Qi, Van Tassel Sarah H, Kovacs Kyle, Chew Emily Y, Lu Zhiyong, Wang Zhangyang, Peng Yifan

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.

出版信息

NPJ Digit Med. 2024 Aug 16;7(1):216. doi: 10.1038/s41746-024-01207-4.

Abstract

Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing a disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.

摘要

深度学习已在医学影像的自动诊断方面取得突破,在眼科领域有许多成功应用。然而,标准的医学图像分类方法仅评估采集时疾病的存在情况,而忽略了纵向成像这一常见临床场景。对于年龄相关性黄斑变性(AMD)和原发性开角型青光眼(POAG)等进展缓慢的眼部疾病,患者需要随时间进行多次成像以跟踪疾病进展,预测未来发病风险对于合理规划治疗至关重要。我们提出的用于生存分析的纵向Transformer(LTSA)能够从纵向医学影像中实现动态疾病预后,通过对在长且不规则时间段内拍摄的眼底摄影图像序列进行建模来预测疾病发生时间。利用年龄相关性眼病研究(AREDS)和高眼压治疗研究(OHTS)的纵向成像数据,在晚期AMD预后的20次直接比较中,LTSA在19次比较中显著优于单图像基线,在POAG预后的20次比较中,LTSA在18次比较中显著优于单图像基线。一项时间注意力分析还表明,虽然最近的图像通常最具影响力,但先前的成像仍具有额外的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e01b/11329720/df8022a4af94/41746_2024_1207_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验