Suppr超能文献

糖基化的马尔可夫模型阐明了糖基工程中同工酶特异性和糖基转移酶相互作用。

A Markov model of glycosylation elucidates isozyme specificity and glycosyltransferase interactions for glycoengineering.

作者信息

Liang Chenguang, Chiang Austin W T, Hansen Anders H, Arnsdorf Johnny, Schoffelen Sanne, Sorrentino James T, Kellman Benjamin P, Bao Bokan, Voldborg Bjørn G, Lewis Nathan E

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Curr Res Biotechnol. 2020 Nov;2:22-36. doi: 10.1016/j.crbiot.2020.01.001. Epub 2020 Jan 23.

Abstract

Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.

摘要

糖基化生物制药在全球制药市场中具有重要地位。尽管其聚糖结构很重要,但我们对糖基化机制的了解有限,这仍然阻碍了对这一关键质量属性的可控性。为了便于发现糖基转移酶的特异性并预测糖基工程的效果,我们在此扩展了将N-连接蛋白糖基化建模为马尔可夫过程的方法。我们的模型利用假定的糖基转移酶(GT)特异性来定义所有测量聚糖的生物合成途径,马尔可夫链建模用于了解糖基转移酶同工型的活性,并预测糖基转移酶敲入/敲除后的糖基化情况。我们将我们的方法应用于在CHO细胞中产生的四种不同的糖基工程治疗药物(即利妥昔单抗、促红细胞生成素、恩利和α-1抗胰蛋白酶)。我们的模型准确地预测了糖基工程后的N-连接糖基化,并进一步量化了糖基转移酶突变对其他糖基转移酶催化反应的影响。通过应用从单糖基转移酶突变体中确定的这些学到的GT-GT相互作用规则,我们的模型进一步预测了多基因糖基转移酶突变对各种生物治疗药物的影响。因此,这种建模方法能够实现合理的糖基工程,并阐明糖基转移酶之间的关系,从而促进生物制药研究,并有助于更广泛地研究糖基化,以阐明糖基化复杂变化的遗传基础。

相似文献

6
Chemical Evolution of Enzyme-Catalyzed Glycosylation.酶催化糖基化的化学进化
Acc Chem Res. 2024 Jan 29. doi: 10.1021/acs.accounts.3c00754.

引用本文的文献

4
Boltzmann Model Predicts Glycan Structures from Lectin Binding.玻尔兹曼模型从凝集素结合预测聚糖结构。
Anal Chem. 2024 May 28;96(21):8332-8341. doi: 10.1021/acs.analchem.3c04992. Epub 2024 May 8.

本文引用的文献

5
Glycosylation in health and disease.糖基化在健康和疾病中的作用。
Nat Rev Nephrol. 2019 Jun;15(6):346-366. doi: 10.1038/s41581-019-0129-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验