Liang Chenguang, Chiang Austin W T, Hansen Anders H, Arnsdorf Johnny, Schoffelen Sanne, Sorrentino James T, Kellman Benjamin P, Bao Bokan, Voldborg Bjørn G, Lewis Nathan E
Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Curr Res Biotechnol. 2020 Nov;2:22-36. doi: 10.1016/j.crbiot.2020.01.001. Epub 2020 Jan 23.
Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.
糖基化生物制药在全球制药市场中具有重要地位。尽管其聚糖结构很重要,但我们对糖基化机制的了解有限,这仍然阻碍了对这一关键质量属性的可控性。为了便于发现糖基转移酶的特异性并预测糖基工程的效果,我们在此扩展了将N-连接蛋白糖基化建模为马尔可夫过程的方法。我们的模型利用假定的糖基转移酶(GT)特异性来定义所有测量聚糖的生物合成途径,马尔可夫链建模用于了解糖基转移酶同工型的活性,并预测糖基转移酶敲入/敲除后的糖基化情况。我们将我们的方法应用于在CHO细胞中产生的四种不同的糖基工程治疗药物(即利妥昔单抗、促红细胞生成素、恩利和α-1抗胰蛋白酶)。我们的模型准确地预测了糖基工程后的N-连接糖基化,并进一步量化了糖基转移酶突变对其他糖基转移酶催化反应的影响。通过应用从单糖基转移酶突变体中确定的这些学到的GT-GT相互作用规则,我们的模型进一步预测了多基因糖基转移酶突变对各种生物治疗药物的影响。因此,这种建模方法能够实现合理的糖基工程,并阐明糖基转移酶之间的关系,从而促进生物制药研究,并有助于更广泛地研究糖基化,以阐明糖基化复杂变化的遗传基础。