Suppr超能文献

基于条件渐进式生成对抗网络的人类大脑活动的深度自然图像重建。

Deep Natural Image Reconstruction from Human Brain Activity Based on Conditional Progressively Growing Generative Adversarial Networks.

机构信息

The MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China.

State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

Neurosci Bull. 2021 Mar;37(3):369-379. doi: 10.1007/s12264-020-00613-4. Epub 2020 Nov 22.

Abstract

Brain decoding based on functional magnetic resonance imaging has recently enabled the identification of visual perception and mental states. However, due to the limitations of sample size and the lack of an effective reconstruction model, accurate reconstruction of natural images is still a major challenge. The current, rapid development of deep learning models provides the possibility of overcoming these obstacles. Here, we propose a deep learning-based framework that includes a latent feature extractor, a latent feature decoder, and a natural image generator, to achieve the accurate reconstruction of natural images from brain activity. The latent feature extractor is used to extract the latent features of natural images. The latent feature decoder predicts the latent features of natural images based on the response signals from the higher visual cortex. The natural image generator is applied to generate reconstructed images from the predicted latent features of natural images and the response signals from the visual cortex. Quantitative and qualitative evaluations were conducted with test images. The results showed that the reconstructed image achieved comparable, accurate reproduction of the presented image in both high-level semantic category information and low-level pixel information. The framework we propose shows promise for decoding the brain activity.

摘要

基于功能磁共振成像的大脑解码技术最近已经能够识别视觉感知和心理状态。然而,由于样本量的限制和缺乏有效的重建模型,准确重建自然图像仍然是一个主要挑战。当前,深度学习模型的快速发展为克服这些障碍提供了可能性。在这里,我们提出了一个基于深度学习的框架,包括潜在特征提取器、潜在特征解码器和自然图像生成器,以实现从大脑活动中准确重建自然图像。潜在特征提取器用于提取自然图像的潜在特征。潜在特征解码器根据来自高级视觉皮层的响应信号预测自然图像的潜在特征。自然图像生成器用于从预测的自然图像潜在特征和来自视觉皮层的响应信号生成重建图像。我们使用测试图像进行了定量和定性评估。结果表明,重建图像在高级语义类别信息和低级像素信息方面都实现了与呈现图像的准确再现。我们提出的框架有望解码大脑活动。

相似文献

4
BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.基于BigGAN的人脑活动自然图像贝叶斯重建
Neuroscience. 2020 Sep 15;444:92-105. doi: 10.1016/j.neuroscience.2020.07.040. Epub 2020 Jul 28.

引用本文的文献

本文引用的文献

1
Generative Adversarial Networks Conditioned on Brain Activity Reconstruct Seen Images.基于大脑活动重建所见图像的生成对抗网络。
Conf Proc IEEE Int Conf Syst Man Cybern. 2018 Oct;2018:1054-1061. doi: 10.1109/SMC.2018.00187. Epub 2019 Jan 17.
8
Deep image reconstruction from human brain activity.从人类大脑活动中进行深度图像重建。
PLoS Comput Biol. 2019 Jan 14;15(1):e1006633. doi: 10.1371/journal.pcbi.1006633. eCollection 2019 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验