Suppr超能文献

通过视觉引导的认知表示和对抗学习从大脑活动中重建可见图像。

Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning.

机构信息

State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi'an 710071, China.

Inception Institute of Artificial Intelligence, Abu Dhabi, UAE.

出版信息

Neuroimage. 2021 Mar;228:117602. doi: 10.1016/j.neuroimage.2020.117602. Epub 2021 Jan 1.

Abstract

Reconstructing perceived stimulus (image) only from human brain activity measured with functional Magnetic Resonance Imaging (fMRI) is a significant task in brain decoding. However, the inconsistent distribution and representation between fMRI signals and visual images cause great 'domain gap'. Moreover, the limited fMRI data instances generally suffer from the issues of low signal noise ratio (SNR), extremely high dimensionality, and limited spatial resolution. Existing methods are often affected by these issues so that a satisfactory reconstruction is still an open problem. In this paper, we show that it is possible to obtain a promising solution by learning visually-guided latent cognitive representations from the fMRI signals, and inversely decoding them to the image stimuli. The resulting framework is called Dual-Variational Autoencoder/ Generative Adversarial Network (D-Vae/Gan), which combines the advantages of adversarial representation learning with knowledge distillation. In addition, we introduce a novel three-stage learning strategy which enables the (cognitive) encoder to gradually distill useful knowledge from the paired (visual) encoder during the learning process. Extensive experimental results on both artificial and natural images have demonstrated that our method could achieve surprisingly good results and outperform the available alternatives.

摘要

从功能磁共振成像 (fMRI) 测量的人类大脑活动中仅重建感知刺激(图像)是大脑解码中的一项重要任务。然而,fMRI 信号与视觉图像之间的不一致分布和表示导致了巨大的“领域差距”。此外,有限的 fMRI 数据实例通常存在信噪比 (SNR) 低、维度极高和空间分辨率有限等问题。现有的方法往往受到这些问题的影响,因此令人满意的重建仍然是一个悬而未决的问题。在本文中,我们表明通过从 fMRI 信号中学习视觉引导的潜在认知表示,并将其反向解码为图像刺激,就有可能获得一个有希望的解决方案。由此产生的框架称为双变分自动编码器/生成对抗网络 (D-Vae/Gan),它结合了对抗性表示学习和知识蒸馏的优势。此外,我们引入了一种新颖的三阶段学习策略,使(认知)编码器在学习过程中能够逐渐从配对的(视觉)编码器中提取有用的知识。在人工和自然图像上的广泛实验结果表明,我们的方法可以取得惊人的好结果,并优于现有的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验