Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Sci Rep. 2022 Jan 7;12(1):141. doi: 10.1038/s41598-021-03938-w.
Neural decoding can be conceptualized as the problem of mapping brain responses back to sensory stimuli via a feature space. We introduce (i) a novel experimental paradigm that uses well-controlled yet highly naturalistic stimuli with a priori known feature representations and (ii) an implementation thereof for HYPerrealistic reconstruction of PERception (HYPER) of faces from brain recordings. To this end, we embrace the use of generative adversarial networks (GANs) at the earliest step of our neural decoding pipeline by acquiring fMRI data as participants perceive face images synthesized by the generator network of a GAN. We show that the latent vectors used for generation effectively capture the same defining stimulus properties as the fMRI measurements. As such, these latents (conditioned on the GAN) are used as the in-between feature representations underlying the perceived images that can be predicted in neural decoding for (re-)generation of the originally perceived stimuli, leading to the most accurate reconstructions of perception to date.
神经解码可以被概念化为通过特征空间将大脑反应映射回感觉刺激的问题。我们引入了(i)一种新颖的实验范式,该范式使用经过良好控制但具有高度自然性的刺激,具有先验已知的特征表示,以及(ii)用于 HYPerrealistic 重建的实现PERception (HYPER) 从大脑记录中获取人脸。为此,我们在神经解码管道的最早步骤中采用生成对抗网络 (GAN),通过获取 fMRI 数据来实现,因为参与者感知由 GAN 的生成器网络合成的人脸图像。我们表明,用于生成的潜在向量有效地捕获与 fMRI 测量相同的定义性刺激特性。因此,这些潜在变量(在 GAN 条件下)被用作感知图像的中间特征表示,可以在神经解码中进行预测,以进行(重新)生成最初感知的刺激,从而实现迄今为止最准确的感知重建。