Biostatistics Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
Department of Mathematics and Statistics, Lancaster University, Lancaster, UK.
Biom J. 2020 Oct;62(6):1408-1427. doi: 10.1002/bimj.201900161. Epub 2020 Apr 13.
Leveraging preclinical animal data for a phase I oncology trial is appealing yet challenging. In this paper, we use animal data to improve decision-making in a model-based dose-escalation procedure. We make a proposal for how to measure and address a prior-data conflict in a sequential study with a small sample size. Animal data are incorporated via a robust two-component mixture prior for the parameters of the human dose-toxicity relationship. The weights placed on each component of the prior are chosen empirically and updated dynamically as the trial progresses and more data accrue. After completion of each cohort, we use a Bayesian decision-theoretic approach to evaluate the predictive utility of the animal data for the observed human toxicity outcomes, reflecting the degree of agreement between dose-toxicity relationships in animals and humans. The proposed methodology is illustrated through several data examples and an extensive simulation study.
利用临床前动物数据开展肿瘤 I 期临床试验具有吸引力,但也具有挑战性。本文使用动物数据改进了基于模型的剂量递增程序中的决策。我们提出了一种在小样本量的序贯研究中如何度量和解决先验数据冲突的方法。通过对人体剂量-毒性关系参数的稳健双组份混合先验,将动物数据纳入其中。先验的每个分量的权重是通过经验选择的,并随着试验的进行和更多数据的积累而动态更新。在每个队列完成后,我们使用贝叶斯决策理论方法来评估动物数据对观察到的人体毒性结果的预测效用,反映动物和人体之间的剂量-毒性关系的一致性程度。通过几个数据示例和广泛的模拟研究来说明所提出的方法。