Department of Mathematics and Statistics, Lancaster University, Lancaster, UK.
Statistical Methodology and Consulting, Novartis Pharma AG, Basel, Switzerland.
Stat Methods Med Res. 2020 Jan;29(1):94-110. doi: 10.1177/0962280218820040. Epub 2019 Jan 16.
Before a first-in-man trial is conducted, preclinical studies are performed in animals to help characterise the safety profile of the new medicine. We propose a robust Bayesian hierarchical model to synthesise animal and human toxicity data, using scaling factors to translate doses administered to different animal species onto an equivalent human scale. After scaling doses, the parameters of dose-toxicity models intrinsic to different animal species can be interpreted on a common scale. A prior distribution is specified for each translation factor to capture uncertainty about differences between toxicity of the drug in animals and humans. Information from animals can then be leveraged to learn about the relationship between dose and risk of toxicity in a new phase I trial in humans. The model allows human dose-toxicity parameters to be exchangeable with the study-specific parameters of animal species studied so far or non-exchangeable with any of them. This leads to robust inferences, enabling the model to give greatest weight to the animal data with parameters most consistent with human parameters or discount all animal data in the case of non-exchangeability. The proposed model is illustrated using a case study and simulations. Numerical results suggest that our proposal improves the precision of estimates of the toxicity rates when animal and human data are consistent, while it discounts animal data in cases of inconsistency.
在进行首次人体试验之前,会在动物身上进行临床前研究,以帮助确定新药的安全性概况。我们提出了一种强大的贝叶斯层次模型,用于综合动物和人体毒性数据,使用缩放因子将不同动物物种给予的剂量转换为等效的人体尺度。在缩放剂量后,可以在共同的尺度上解释不同动物物种内在的剂量-毒性模型的参数。为每个转换因子指定一个先验分布,以捕获药物在动物和人类中的毒性差异的不确定性。然后,可以利用动物信息来了解在新的 I 期临床试验中,剂量与毒性风险之间的关系。该模型允许将人类剂量-毒性参数与迄今为止研究的动物物种的研究特定参数进行交换,或者与它们中的任何一个都不进行交换。这导致了稳健的推断,使模型能够根据最符合人类参数的动物数据或在不可交换的情况下忽略所有动物数据,对最大权重。使用案例研究和模拟说明了所提出的模型。数值结果表明,当动物和人体数据一致时,我们的建议可以提高毒性率估计的精度,而在不一致的情况下,它会忽略动物数据。