Suppr超能文献

使用相称先验来利用实验前数据的贝叶斯样本量确定。

Bayesian sample size determination using commensurate priors to leverage pre-experimental data.

作者信息

Zheng Haiyan, Jaki Thomas, Wason James M S

机构信息

MRC Biostatistics Unit, University of Cambridge, U.K.

Population Health Sciences Institute, Newcastle University, U.K.

出版信息

Biometrics. 2022 Mar 6;79(2):669-683. doi: 10.1111/j.1541-0420.2005.00454.x.

Abstract

This paper develops Bayesian sample size formulae for experiments comparing two groups, where relevant pre-experimental information from multiple sources can be incorporated in a robust prior to support both the design and analysis. We use commensurate predictive priors for borrowing of information, and further place Gamma mixture priors on the precisions to account for preliminary belief about the pairwise (in)commensurability between parameters that underpin the historical and new experiments. Averaged over the probability space of the new experimental data, appropriate sample sizes are found according to criteria that control certain aspects of the posterior distribution, such as the coverage probability or length of a defined density region. Our Bayesian methodology can be applied to circumstances that compare two normal means, proportions or event times. When nuisance parameters (such as variance) in the new experiment are unknown, a prior distribution can further be specified based on pre-experimental data. Exact solutions are available based on most of the criteria considered for Bayesian sample size determination, while a search procedure is described in cases for which there are no closed-form expressions. We illustrate the application of our sample size formulae in the design of clinical trials, where pre-trial information is available to be leveraged. Hypothetical data examples, motivated by a rare-disease trial with elicited expert prior opinion, and a comprehensive performance evaluation of the proposed methodology are presented.

摘要

本文针对比较两组的实验,推导了贝叶斯样本量公式,其中可以将来自多个来源的相关实验前信息纳入一个稳健先验中,以支持设计和分析。我们使用相称预测先验来借用信息,并进一步对精度设置伽马混合先验,以考虑对支撑历史实验和新实验的参数之间成对(不)相称性的初步信念。在新实验数据的概率空间上进行平均,根据控制后验分布某些方面的标准(如覆盖概率或定义密度区域的长度)找到合适的样本量。我们的贝叶斯方法可应用于比较两个正态均值、比例或事件时间的情况。当新实验中的干扰参数(如方差)未知时,可以根据实验前数据进一步指定先验分布。基于用于贝叶斯样本量确定的大多数标准,可得到精确解,而对于没有闭式表达式的情况,描述了一种搜索程序。我们说明了样本量公式在临床试验设计中的应用,其中可利用试验前信息。给出了由一个引出专家先验意见的罕见病试验激发的假设数据示例,以及对所提出方法的全面性能评估。

相似文献

10

引用本文的文献

2
Design and analysis of umbrella trials: Where do we stand?伞形试验的设计与分析:我们目前的进展如何?
Front Med (Lausanne). 2022 Oct 12;9:1037439. doi: 10.3389/fmed.2022.1037439. eCollection 2022.

本文引用的文献

3
Predictively consistent prior effective sample sizes.可预测一致性先验有效样本量。
Biometrics. 2020 Jun;76(2):578-587. doi: 10.1111/biom.13252. Epub 2020 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验