Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
Nat Commun. 2020 Apr 14;11(1):1814. doi: 10.1038/s41467-020-15610-4.
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter's correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics.
X 射线自由电子激光(XFEL)能够突破晶体结构在辐射损伤限制下的同步辐射测量。通过在晶体有序性丧失时对布拉格衍射进行门控,可以缓解对极短 XFEL 脉冲的需求,但如果由于元素分布等原因导致离子化事件在空间上不均匀,情况就并非如此,这种情况在生物样品中很常见。事实上,在使用 80fs 的超长脉冲辐照铁氧还蛋白微晶体时,观察到铁和硫离子的相关运动。在这里,我们报告了一个在蛋白质纳米晶体上进行的飞秒时间分辨 X 射线泵浦/探测实验。我们观察到蛋白质骨架和芳香族残基以及二硫键的变化。模拟表明,由于离子囚禁和等离子体电子屏蔽的显著影响,后者的相关结构动力学比预期的高原子电荷态慢得多。这表明密集环境效应可以强烈影响局部辐射损伤诱导的结构动力学。