MacCarthy Christopher, Koudan Elizaveta, Shevtsov Mikhail, Parfenov Vladislav, Petrov Stanislav, Levin Aleksandr, Senatov Fedor, Sykilinda Nina, Ostrovskiy Sergey, Pekov Stanislav, Gushchin Ivan, Popov Igor, Zinovev Egor, Bogorodskiy Andrey, Mishin Alexey, Ivanovich Valentin, Rogachev Andrey, Khesuani Yusef, Borshchevskiy Valentin
Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
National University of Science and Technology MISIS, Moscow, Russia.
NPJ Microgravity. 2025 Jun 14;11(1):25. doi: 10.1038/s41526-025-00477-w.
Protein crystallization holds paramount significance in structural biology, serving as a pivotal technique for unveiling the three-dimensional (3D) architecture of proteins. While microgravity conditions in space offer distinct advantages for high-quality protein crystal growth by mitigating the influences of gravity and convection, the development of reliable techniques for protein crystallization in space with precise control over the crystallization process and its meticulous inspections remains a challenge. In this study, we present an innovative bioassembler-specifically, the 'Organ.Aut'-which we successfully employed to crystallize protein in space. The bioassembler 'Organ.Aut' produced highly ordered crystals diffracted to a true-atomic resolution of ∼1 Å. These data allowed for a detailed examination of atomic structures, enabling thorough structural comparisons with crystals grown on Earth. Our finding suggests that the bioassembler 'Organ.Aut' stands as a promising and viable option for advancing protein crystallization in space.
蛋白质结晶在结构生物学中具有至关重要的意义,是揭示蛋白质三维(3D)结构的关键技术。虽然太空微重力条件通过减轻重力和对流的影响为高质量蛋白质晶体生长提供了独特优势,但开发能够精确控制结晶过程并进行细致检查的可靠太空蛋白质结晶技术仍然是一项挑战。在本研究中,我们展示了一种创新的生物组装器——具体而言是“Organ.Aut”——我们成功地利用它在太空中使蛋白质结晶。生物组装器“Organ.Aut”产生了高度有序的晶体,其衍射达到了约1埃的真原子分辨率。这些数据使得能够对原子结构进行详细检查,从而与在地球上生长的晶体进行全面的结构比较。我们的发现表明,生物组装器“Organ.Aut”是推进太空蛋白质结晶的一个有前途且可行的选择。