Suppr超能文献

运用解释方法解决基于深度学习的组织病理学图像分析中的挑战。

Resolving challenges in deep learning-based analyses of histopathological images using explanation methods.

机构信息

TU Berlin, Machine Learning Group, Berlin, 10587, Germany.

Fraunhofer Heinrich Hertz Institute, Department of Video Coding & Analytics, Berlin, 10587, Germany.

出版信息

Sci Rep. 2020 Apr 14;10(1):6423. doi: 10.1038/s41598-020-62724-2.

Abstract

Deep learning has recently gained popularity in digital pathology due to its high prediction quality. However, the medical domain requires explanation and insight for a better understanding beyond standard quantitative performance evaluation. Recently, many explanation methods have emerged. This work shows how heatmaps generated by these explanation methods allow to resolve common challenges encountered in deep learning-based digital histopathology analyses. We elaborate on biases which are typically inherent in histopathological image data. In the binary classification task of tumour tissue discrimination in publicly available haematoxylin-eosin-stained images of various tumour entities, we investigate three types of biases: (1) biases which affect the entire dataset, (2) biases which are by chance correlated with class labels and (3) sampling biases. While standard analyses focus on patch-level evaluation, we advocate pixel-wise heatmaps, which offer a more precise and versatile diagnostic instrument. This insight is shown to not only be helpful to detect but also to remove the effects of common hidden biases, which improves generalisation within and across datasets. For example, we could see a trend of improved area under the receiver operating characteristic (ROC) curve by 5% when reducing a labelling bias. Explanation techniques are thus demonstrated to be a helpful and highly relevant tool for the development and the deployment phases within the life cycle of real-world applications in digital pathology.

摘要

深度学习由于其预测质量高,最近在数字病理学领域得到了广泛关注。然而,医学领域需要解释和深入了解,以便超越标准的定量性能评估。最近,出现了许多解释方法。这项工作展示了这些解释方法生成的热图如何解决基于深度学习的数字组织病理学分析中遇到的常见挑战。我们详细介绍了在各种肿瘤实体的苏木精和伊红染色图像的公共数据集的肿瘤组织分类任务中,通常存在于组织病理学图像数据中的偏差。我们研究了三种类型的偏差:(1)影响整个数据集的偏差,(2)与类别标签偶然相关的偏差,(3)采样偏差。虽然标准分析侧重于补丁级评估,但我们提倡使用像素级热图,这提供了更精确和通用的诊断工具。事实证明,这种洞察力不仅有助于检测,而且有助于消除常见隐藏偏差的影响,从而提高了数据集内和数据集间的泛化能力。例如,我们可以看到,通过减少标记偏差,接收器操作特征(ROC)曲线下面积提高了 5%。因此,解释技术被证明是数字病理学中真实应用生命周期的开发和部署阶段的有用且高度相关的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1366/7156509/351702c56012/41598_2020_62724_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验