Frascarelli Chiara, Venetis Konstantinos, Marra Antonio, Mane Eltjona, Ivanova Mariia, Cursano Giulia, Porta Francesca Maria, Concardi Alberto, Ceol Arnaud Gerard Michel, Farina Annarosa, Criscitiello Carmen, Curigliano Giuseppe, Guerini-Rocco Elena, Fusco Nicola
Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy.
Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
Comput Struct Biotechnol J. 2024 Nov 26;23:4252-4259. doi: 10.1016/j.csbj.2024.11.037. eCollection 2024 Dec.
The tumor suppressor is frequently mutated in hormone receptor-negative, HER2-positive breast cancer (BC), contributing to tumor aggressiveness. Traditional ancillary methods like immunohistochemistry (IHC) to assess functionality face pre- and post-analytical challenges. This proof-of-concept study employed a deep learning (DL) algorithm to predict mutational status from H&E-stained whole slide images (WSIs) of BC tissue. Using a pre-trained convolutional neural network, the model identified tumor areas and predicted TP53 mutations with a Dice coefficient score of 0.82. Predictions were validated through IHC and next-generation sequencing (NGS), confirming TP53 aberrant expression in 92 % of the tumor area, closely matching IHC findings (90 %). The DL model exhibited high accuracy in tissue quantification and TP53 status prediction, outperforming traditional methods in terms of precision and efficiency. DL-based approaches offer significant promise for enhancing biomarker testing and precision oncology by reducing intra- and inter-observer variability, but further validation is required to optimize their integration into real-world clinical workflows. This study underscores the potential of DL algorithms to predict key genetic alterations, such as mutations, in BC. DL-based histopathological analysis represents a valuable tool for improving patient management and tailoring treatment approaches based on molecular biomarker status.
肿瘤抑制因子在激素受体阴性、人表皮生长因子受体2(HER2)阳性乳腺癌(BC)中经常发生突变,这会导致肿瘤侵袭性增强。像免疫组织化学(IHC)这样评估其功能的传统辅助方法面临分析前和分析后的挑战。这项概念验证研究采用深度学习(DL)算法,从BC组织的苏木精和伊红(H&E)染色全切片图像(WSIs)预测其突变状态。该模型使用预训练的卷积神经网络识别肿瘤区域,并以0.82的Dice系数得分预测TP53突变。通过IHC和下一代测序(NGS)对预测结果进行验证,证实92%的肿瘤区域存在TP53异常表达,与IHC结果(90%)密切匹配。DL模型在组织定量和TP53状态预测方面表现出高精度,在准确性和效率方面优于传统方法。基于DL 的方法通过减少观察者内和观察者间的变异性,在增强生物标志物检测和精准肿瘤学方面具有巨大潜力,但需要进一步验证以优化其融入实际临床工作流程。这项研究强调了DL算法在预测BC中关键基因改变(如TP53突变)方面的潜力。基于DL的组织病理学分析是改善患者管理和根据分子生物标志物状态定制治疗方法的有价值工具。