Suppr超能文献

通过高分辨率组织病理学图像分析基于深度学习的食管癌亚型识别

Deep learning-based identification of esophageal cancer subtypes through analysis of high-resolution histopathology images.

作者信息

Aalam Syed Wajid, Ahanger Abdul Basit, Masoodi Tariq A, Bhat Ajaz A, Akil Ammira S Al-Shabeeb, Khan Meraj Alam, Assad Assif, Macha Muzafar A, Bhat Muzafar Rasool

机构信息

Department of Computer Science, Islamic University of Science and Technology, Awantipora, India.

Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar.

出版信息

Front Mol Biosci. 2024 Mar 19;11:1346242. doi: 10.3389/fmolb.2024.1346242. eCollection 2024.

Abstract

Esophageal cancer (EC) remains a significant health challenge globally, with increasing incidence and high mortality rates. Despite advances in treatment, there remains a need for improved diagnostic methods and understanding of disease progression. This study addresses the significant challenges in the automatic classification of EC, particularly in distinguishing its primary subtypes: adenocarcinoma and squamous cell carcinoma, using histopathology images. Traditional histopathological diagnosis, while being the gold standard, is subject to subjectivity and human error and imposes a substantial burden on pathologists. This study proposes a binary class classification system for detecting EC subtypes in response to these challenges. The system leverages deep learning techniques and tissue-level labels for enhanced accuracy. We utilized 59 high-resolution histopathological images from The Cancer Genome Atlas (TCGA) Esophageal Carcinoma dataset (TCGA-ESCA). These images were preprocessed, segmented into patches, and analyzed using a pre-trained ResNet101 model for feature extraction. For classification, we employed five machine learning classifiers: Support Vector Classifier (SVC), Logistic Regression (LR), Decision Tree (DT), AdaBoost (AD), Random Forest (RF), and a Feed-Forward Neural Network (FFNN). The classifiers were evaluated based on their prediction accuracy on the test dataset, yielding results of 0.88 (SVC and LR), 0.64 (DT and AD), 0.82 (RF), and 0.94 (FFNN). Notably, the FFNN classifier achieved the highest Area Under the Curve (AUC) score of 0.92, indicating its superior performance, followed closely by SVC and LR, with a score of 0.87. This suggested approach holds promising potential as a decision-support tool for pathologists, particularly in regions with limited resources and expertise. The timely and precise detection of EC subtypes through this system can substantially enhance the likelihood of successful treatment, ultimately leading to reduced mortality rates in patients with this aggressive cancer.

摘要

食管癌(EC)在全球范围内仍然是一项重大的健康挑战,其发病率不断上升且死亡率很高。尽管治疗方面取得了进展,但仍需要改进诊断方法并深入了解疾病进展。本研究探讨了食管癌自动分类中的重大挑战,特别是利用组织病理学图像区分其主要亚型:腺癌和鳞状细胞癌。传统的组织病理学诊断虽是金标准,但存在主观性和人为误差,给病理学家带来了沉重负担。针对这些挑战,本研究提出了一种用于检测EC亚型的二分类系统。该系统利用深度学习技术和组织层面标签来提高准确性。我们使用了来自癌症基因组图谱(TCGA)食管癌数据集(TCGA-ESCA)的59张高分辨率组织病理学图像。这些图像经过预处理,分割成小块,并使用预训练的ResNet101模型进行特征提取分析。对于分类,我们采用了五种机器学习分类器:支持向量分类器(SVC)、逻辑回归(LR)、决策树(DT)、AdaBoost(AD)、随机森林(RF)和前馈神经网络(FFNN)。根据分类器在测试数据集上的预测准确性对其进行评估,得到的结果分别为:SVC和LR为0.88,DT和AD为0.64,RF为0.82,FFNN为0.94。值得注意的是,FFNN分类器的曲线下面积(AUC)得分最高,为0.92,表明其性能优越,紧随其后的是SVC和LR,得分为0.87。这种建议的方法作为病理学家的决策支持工具具有很大的潜力,特别是在资源和专业知识有限的地区。通过该系统及时、准确地检测EC亚型可以大大提高成功治疗的可能性,最终降低这种侵袭性癌症患者的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdbc/10985197/13447e52dd74/fmolb-11-1346242-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验