Suppr超能文献

具有检疫调整发病率和易感个体检疫的模型动力学

Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals.

作者信息

Safi Mohammad A, Gumel Abba B

机构信息

Department of Mathematics, The Hashemite University, Zarqa, Jordan.

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.

出版信息

J Math Anal Appl. 2013 Mar 15;399(2):565-575. doi: 10.1016/j.jmaa.2012.10.015. Epub 2012 Oct 17.

Abstract

A new deterministic model for the spread of a communicable disease that is controllable using mass quarantine is designed. Unlike in the case of the vast majority of prior quarantine models in the literature, the new model includes a quarantine-adjusted incidence function for the infection rate and the quarantine of susceptible individuals suspected of being exposed to the disease (thereby making it more realistic epidemiologically). The earlier quarantine models tend to only explicitly consider individuals who are already infected, but show no clinical symptoms of the disease (i.e., those latently-infected), in the quarantine class (while ignoring the quarantine of susceptible individuals). In reality, however, the vast majority of people in quarantine (during a disease outbreak) are susceptible. Rigorous analysis of the model shows that the assumed imperfect nature of quarantine (in preventing the infection of quarantined susceptible individuals) induces the phenomenon of backward bifurcation when the associated reproduction threshold is less than unity (thereby making effective disease control difficult). For the case when the efficacy of quarantine to prevent infection during quarantine is perfect, the disease-free equilibrium is globally-asymptotically stable when the reproduction threshold is less than unity. Furthermore, the model has a unique endemic equilibrium when the reproduction threshold exceeds unity (and the disease persists in the population in this case).

摘要

设计了一种新的确定性传染病传播模型,该模型可通过大规模隔离进行控制。与文献中绝大多数先前的隔离模型不同,新模型包括一个针对感染率的隔离调整发病率函数以及对疑似接触过该疾病的易感个体进行隔离(从而使其在流行病学上更具现实意义)。早期的隔离模型往往只明确考虑已感染但无该疾病临床症状的个体(即那些潜伏感染的个体)在隔离类别中(而忽略了易感个体的隔离)。然而,实际上,(疾病爆发期间)绝大多数处于隔离状态的人是易感的。对该模型的严格分析表明,假设的隔离不完美性(在防止被隔离的易感个体感染方面)会在相关繁殖阈值小于1时引发后向分岔现象(从而使有效的疾病控制变得困难)。对于隔离期间防止感染的隔离效果完美的情况,当繁殖阈值小于1时,无病平衡点是全局渐近稳定的。此外,当繁殖阈值超过1时,该模型有唯一的地方病平衡点(在这种情况下疾病在人群中持续存在)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf5/7125820/da903c38cfd9/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验