Kalbaugh David V
33 N Pintail Dr, Ocean Pines, MD 21811, United States.
Infect Dis Model. 2025 Mar 18;10(3):813-839. doi: 10.1016/j.idm.2025.03.007. eCollection 2025 Sep.
Assuming a homogeneous population, we employ a deterministic model based on first principles of probability to explore dynamics of an epidemic controlled by isolation alone, quarantine alone, and the two together. We develop explicit closed-form equations for key metrics of control performance: cumulative fraction of population infected over the course of the epidemic (final size), maximum fraction infected at any one time, and epidemic duration. We derive an analytical solution for final size of an epidemic controlled by isolation, when final size is small, and develop empirical relations for the other cases. We frame equations in terms of reproduction numbers, measures of intervention effort and initial conditions. We model both strength and speed of interventions, assume second order gamma distributions for intervention waiting times and employ non-time-invariant equations for quarantine. We also account for quarantine of unexposed, susceptible individuals and for imperfect intervention.
假设人口是同质的,我们采用基于概率基本原理的确定性模型,来探究仅通过隔离、仅通过检疫以及两者结合所控制的疫情动态。我们针对控制效果的关键指标推导出明确的闭式方程:疫情期间感染人群的累积比例(最终规模)、任何时刻的最大感染比例以及疫情持续时间。当最终规模较小时,我们推导出了通过隔离控制的疫情最终规模的解析解,并针对其他情况建立了经验关系。我们根据再生数、干预力度的度量和初始条件来构建方程。我们对干预的强度和速度进行建模,假设干预等待时间服从二阶伽马分布,并采用非时不变方程来描述检疫。我们还考虑了对未暴露的易感个体进行检疫以及不完全干预的情况。