Suppr超能文献

循环miR-21作为口腔癌诊断的潜在生物标志物:一项荟萃分析的系统评价

Circulating miR-21 as a Potential Biomarker for the Diagnosis of Oral Cancer: A Systematic Review with Meta-Analysis.

作者信息

Dioguardi Mario, Caloro Giorgia Apollonia, Laino Luigi, Alovisi Mario, Sovereto Diego, Crincoli Vito, Aiuto Riccardo, Coccia Erminia, Troiano Giuseppe, Lo Muzio Lorenzo

机构信息

Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy.

Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari, Via Piazza Giulio Cesare, 70124 Bari, Italy.

出版信息

Cancers (Basel). 2020 Apr 10;12(4):936. doi: 10.3390/cancers12040936.

Abstract

Head and neck squamous cell carcinoma (HNSCC) is one of the main neoformations of the head-neck region and is characterized by the presence of squamous carcinomatous cells of the multi-layered epithelium lining the oral cavity, larynx, and pharynx. The annual incidence of squamous cell carcinoma of the head and neck (HNSCC) comprises approximately 600,000 new cases globally. Currently, the 5-year survival from HNSCC is less than 50%. Surgical, radiotherapy, and chemotherapy treatments strongly compromise patient quality of life. MicroRNAs (miRNAs) are a family of small noncoding endogenous RNAs that function in regulating gene expression by regulating several biological processes, including carcinogenesis. The main upregulated microRNAs associated with oral carcinoma are miR-21, miR-455-5p, miR-155-5p, miR-372, miR-373, miR-29b, miR-1246, miR-196a, and miR-181, while the main downregulated miRNAs are miR-204, miR-101, miR-32, miR-20a, miR-16, miR-17, and miR-125b. miR-21 represents one of the first oncomirs studied. The present systematic review work was performed based on the preferred reporting items for systematic review and meta-analysis (PRISMA) protocol. A search was carried out in the PubMed and Scopus databases with the use of keywords. This search produced 628 records which, after the elimination of duplicates and the application of the inclusion and exclusion criteria, led to 7 included articles. The heterogeneity of the studies according to the odds ratio was high, with a Q value of 26.616 ( < 0.001), and the was 77.457% for specificity. The heterogeneity was high, with a Q value of 25.243 ( < 0.001) and the was 76.231% for sensitivity. The heterogeneity of data showed a Q value of 27.815 ( < 0.001) and the was 78.429%. Therefore, the random-effects model was selected. The diagnostic odds ratio was 7.620 (95% CI 3.613-16.070). The results showed that the sensitivity was 0.771 (95% CI 0.680-0.842) ( < 0.001) while, for specificity, we found 0.663 (95% CI 0.538-0.770) ( < 0.001). The negative likelihood ratio (NLR) was 0.321 (95% CI 0.186-0.554), and the positive likelihood ratio (PLR) was 2.144 (95% CI 1.563-2.943). The summary ROC plot demonstrates that the diagnostic test presents good specificity and sensitivity, and the area under the curve (AUC), as calculated from the graph, was 0.79.

摘要

头颈部鳞状细胞癌(HNSCC)是头颈部主要的新生物之一,其特征是在口腔、喉和咽的多层上皮中存在鳞状癌细胞。全球头颈部鳞状细胞癌(HNSCC)的年发病率约为60万新发病例。目前,HNSCC患者的5年生存率低于50%。手术、放疗和化疗治疗严重影响患者的生活质量。微小RNA(miRNA)是一类小的非编码内源性RNA,通过调节包括致癌作用在内的多种生物学过程来调控基因表达。与口腔癌相关的主要上调微小RNA有miR-21、miR-455-5p、miR-155-5p、miR-372、miR-373、miR-29b、miR-1246、miR-196a和miR-181,而主要下调的微小RNA有miR-204、miR-101、miR-32、miR-20a、miR-16、miR-17和miR-125b。miR-21是最早研究的致癌微小RNA之一。本系统评价工作是根据系统评价和Meta分析的首选报告项目(PRISMA)方案进行的。使用关键词在PubMed和Scopus数据库中进行了检索。该检索产生了628条记录,在消除重复记录并应用纳入和排除标准后,最终纳入7篇文章。根据比值比,研究的异质性较高,Q值为26.616(<0.001),特异性的I²为77.457%。异质性较高,Q值为25.243(<0.001),敏感性的I²为76.231%。数据的异质性显示Q值为27.815(<0.001),I²为78.429%。因此,选择随机效应模型。诊断比值比为7.620(95%CI 3.613 - 16.070)。结果显示敏感性为0.771(95%CI 0.680 - 0.842)(<0.001),而特异性方面,我们发现为0.663(95%CI 0.538 - 0.770)(<0.001)。阴性似然比(NLR)为0.321(95%CI 0.186 - 0.554),阳性似然比(PLR)为2.144(95%CI 1.563 - 2.943)。汇总ROC曲线表明该诊断试验具有良好的特异性和敏感性,根据图表计算的曲线下面积(AUC)为0.79。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe70/7226103/e6edd2adffde/cancers-12-00936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验