Suppr超能文献

转录组数据有助于提高有丝分裂计数的肺类癌肿瘤的分类准确性。

Transcriptomic data helps refining classification of pulmonary carcinoid tumors with increased mitotic counts.

机构信息

Quebec Heart and Lung Institute Research Center, Quebec City, QC, Canada.

Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.

出版信息

Mod Pathol. 2020 Sep;33(9):1712-1721. doi: 10.1038/s41379-020-0538-8. Epub 2020 Apr 14.

Abstract

Pulmonary neuroendocrine neoplasms are classified by WHO as either typical or atypical carcinoids, large cell (LCNEC) or small cell (SCLC) neuroendocrine carcinoma based on mitotic count, morphology, and necrosis assessment. LCNEC with low mitotic count and sharing morphologic features with carcinoids are in a gray zone for classification and their rare prevalence and the paucity of studies precludes proper validation of the current grading system. In this study, we aim to investigate their clinicopathological and transcriptomic profiles. Lung resection specimens obtained from 18 patients diagnosed with carcinoids or LCNEC were selected. Four of them were characterized as borderline tumors based on a mitotic rate ranging between 10 and 30 mitoses per 2 mm. Comprehensive morphological and immunohistochemical (IHC) evaluation was performed and tumor-based transcriptomic profiles were analyzed through unsupervised clustering. Clustering analysis revealed two distinct molecular groups characterized by low (C1) and high (C2) proliferation. C1 was comprised of seven carcinoids and three borderline tumors, while C2 was comprised of seven LCNEC and one borderline tumor. Furthermore, patients in cluster C1 had a better recurrence-free survival compared with patients in cluster C2 (20% vs 75%). Histological features, IHC profile, and molecular analysis showed that three out of four borderline tumors showed features consistent with carcinoids. Therefore, our findings convey that the current diagnostic guidelines are suboptimal for classification of pulmonary neuroendocrine tumors with increased proliferative index and carcinoid-like morphology. These results support the emerging concept that neuroendocrine tumors with carcinoid-like features and mitotic count of <20 mitoses per 2 mm should be regarded as pulmonary carcinoids instead of LCNEC.

摘要

肺神经内分泌肿瘤根据 WHO 分类,基于有丝分裂计数、形态和坏死评估,分为典型或非典型类癌、大细胞神经内分泌癌(LCNEC)或小细胞神经内分泌癌(SCLC)。LCNEC 有丝分裂计数低且具有类癌形态特征,其分类处于灰色地带,且其罕见的患病率和研究的缺乏妨碍了当前分级系统的适当验证。在这项研究中,我们旨在研究其临床病理和转录组特征。从诊断为类癌或 LCNEC 的 18 名患者中选择肺切除标本。其中 4 例由于有丝分裂率在 10-30 个/2mm 之间而被定义为交界性肿瘤。进行了全面的形态学和免疫组织化学(IHC)评估,并通过无监督聚类分析肿瘤的转录组特征。聚类分析显示了两个不同的分子群,其特征是低增殖(C1)和高增殖(C2)。C1 由 7 例类癌和 3 例交界性肿瘤组成,C2 由 7 例 LCNEC 和 1 例交界性肿瘤组成。此外,聚类 C1 中的患者无复发生存率优于聚类 C2 中的患者(20%比 75%)。组织学特征、IHC 特征和分子分析显示,4 例交界性肿瘤中有 3 例具有类癌样特征。因此,我们的研究结果表明,目前的诊断指南对于增殖指数增加和类癌样形态的肺神经内分泌肿瘤的分类并不理想。这些结果支持了一个新兴概念,即具有类癌样特征和有丝分裂计数<20 个/2mm 的神经内分泌肿瘤应被视为肺类癌而不是 LCNEC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验