Suppr超能文献

计算机辅助检测人工智能可降低MRI评估髋关节异常时的阅片者间差异。

Computer-Aided Detection AI Reduces Interreader Variability in Grading Hip Abnormalities With MRI.

作者信息

Tibrewala Radhika, Ozhinsky Eugene, Shah Rutwik, Flament Io, Crossley Kay, Srinivasan Ramya, Souza Richard, Link Thomas M, Pedoia Valentina, Majumdar Sharmila

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.

La Trobe Sport and Exercise Medicine Research Centre, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia.

出版信息

J Magn Reson Imaging. 2020 Oct;52(4):1163-1172. doi: 10.1002/jmri.27164. Epub 2020 Apr 15.

Abstract

BACKGROUND

Accurate interpretation of hip MRI is time-intensive and difficult, prone to inter- and intrareviewer variability, and lacks a universally accepted grading scale to evaluate morphological abnormalities.

PURPOSE

To 1) develop and evaluate a deep-learning-based model for binary classification of hip osteoarthritis (OA) morphological abnormalities on MR images, and 2) develop an artificial intelligence (AI)-based assist tool to find if using the model predictions improves interreader agreement in hip grading.

STUDY TYPE

Retrospective study aimed to evaluate a technical development.

POPULATION

A total of 764 MRI volumes (364 patients) obtained from two studies (242 patients from LASEM [FORCe] and 122 patients from UCSF), split into a 65-25-10% train, validation, test set for network training.

FIELD STRENGTH/SEQUENCE: 3T MRI, 2D T FSE, PD SPAIR.

ASSESSMENT

Automatic binary classification of cartilage lesions, bone marrow edema-like lesions, and subchondral cyst-like lesions using the MRNet, interreader agreement before and after using network predictions.

STATISTICAL TESTS

Receiver operating characteristic (ROC) curve, area under curve (AUC), specificity and sensitivity, and balanced accuracy.

RESULTS

For cartilage lesions, bone marrow edema-like lesions and subchondral cyst-like lesions the AUCs were: 0.80 (95% confidence interval [CI] 0.65, 0.95), 0.84 (95% CI 0.67, 1.00), and 0.77 (95% CI 0.66, 0.85), respectively. The sensitivity and specificity of the radiologist for binary classification were: 0.79 (95% CI 0.65, 0.93) and 0.80 (95% CI 0.59, 1.02), 0.40 (95% CI -0.02, 0.83) and 0.72 (95% CI 0.59, 0.86), 0.75 (95% CI 0.45, 1.05) and 0.88 (95% CI 0.77, 0.98). The interreader balanced accuracy increased from 53%, 71% and 56% to 60%, 73% and 68% after using the network predictions and saliency maps.

DATA CONCLUSION

We have shown that a deep-learning approach achieved high performance in clinical classification tasks on hip MR images, and that using the predictions from the deep-learning model improved the interreader agreement in all pathologies.

LEVEL OF EVIDENCE

3 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:1163-1172.

摘要

背景

准确解读髋关节磁共振成像(MRI)耗时且困难,容易出现不同阅片者之间以及同一阅片者不同时间的差异,并且缺乏一个普遍接受的分级量表来评估形态学异常。

目的

1)开发并评估一种基于深度学习的模型,用于对髋关节骨关节炎(OA)MRI图像上的形态学异常进行二元分类;2)开发一种基于人工智能(AI)的辅助工具,以确定使用模型预测是否能提高髋关节分级中阅片者之间的一致性。

研究类型

旨在评估技术开发的回顾性研究。

研究对象

从两项研究中获取的总共764个MRI容积数据(364例患者)(来自洛杉矶西奈医学中心[FORCE]的242例患者和来自加州大学旧金山分校的122例患者),分为65 - 25 - 10%的训练集、验证集和测试集用于网络训练。

场强/序列:3T MRI,二维快速自旋回波(T FSE),质子密度加权脂肪抑制(PD SPAIR)。

评估

使用MRNet对软骨损伤、骨髓水肿样损伤和软骨下囊肿样损伤进行自动二元分类,使用网络预测前后阅片者之间的一致性。

统计检验

受试者操作特征(ROC)曲线、曲线下面积(AUC)、特异性和敏感性以及平衡准确性。

结果

对于软骨损伤、骨髓水肿样损伤和软骨下囊肿样损伤,AUC分别为:0.80(95%置信区间[CI] 0.65,0.95)、0.84(95% CI 0.67,1.00)和0.77(95% CI 0.66,0.85)。放射科医生进行二元分类的敏感性和特异性分别为:0.79(95% CI 0.65,0.93)和0.80(95% CI 0.59,1.02),0.40(95% CI -0.02,0.83)和0.72(95% CI 0.59,0.86),0.75(95% CI 0.45,1.05)和0.88(95% CI 0.77,0.98)。使用网络预测和显著性图后,阅片者之间的平衡准确性从53%、71%和56%分别提高到60%、73%和68%。

数据结论

我们已经表明,深度学习方法在髋关节MRI图像的临床分类任务中取得了高性能,并且使用深度学习模型的预测提高了所有病变中阅片者之间的一致性。

证据水平

3 技术效能阶段:1 《磁共振成像杂志》2020;52:1163 - 1172。

相似文献

1
Computer-Aided Detection AI Reduces Interreader Variability in Grading Hip Abnormalities With MRI.
J Magn Reson Imaging. 2020 Oct;52(4):1163-1172. doi: 10.1002/jmri.27164. Epub 2020 Apr 15.
2
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov.
3
Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
J Magn Reson Imaging. 2019 Oct;50(4):1260-1267. doi: 10.1002/jmri.26693. Epub 2019 Feb 27.
4
Automated MR Image Prescription of the Liver Using Deep Learning: Development, Evaluation, and Prospective Implementation.
J Magn Reson Imaging. 2023 Aug;58(2):429-441. doi: 10.1002/jmri.28564. Epub 2022 Dec 30.
5
Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
J Magn Reson Imaging. 2018 Dec;48(6):1570-1577. doi: 10.1002/jmri.26047. Epub 2018 Apr 16.
8
Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
J Magn Reson Imaging. 2020 Jan;51(1):175-182. doi: 10.1002/jmri.26766. Epub 2019 May 2.

引用本文的文献

2
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.
Quant Imaging Med Surg. 2025 May 1;15(5):3993-4013. doi: 10.21037/qims-24-1384. Epub 2025 Apr 28.
3
Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade.
Skeletal Radiol. 2024 Sep;53(9):1849-1868. doi: 10.1007/s00256-024-04684-6. Epub 2024 Jun 20.
4
Bone marrow lesions in osteoarthritis: From basic science to clinical implications.
Bone Rep. 2023 Feb 25;18:101667. doi: 10.1016/j.bonr.2023.101667. eCollection 2023 Jun.
5
DomainATM: Domain adaptation toolbox for medical data analysis.
Neuroimage. 2023 Mar;268:119863. doi: 10.1016/j.neuroimage.2023.119863. Epub 2023 Jan 5.
6
Utilizing a Digital Swarm Intelligence Platform to Improve Consensus Among Radiologists and Exploring Its Applications.
J Digit Imaging. 2023 Apr;36(2):401-413. doi: 10.1007/s10278-022-00662-3. Epub 2022 Nov 22.
7
Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging.
Nat Rev Rheumatol. 2022 Feb;18(2):112-121. doi: 10.1038/s41584-021-00719-7. Epub 2021 Nov 30.
8
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis.
Sci Rep. 2021 May 25;11(1):10915. doi: 10.1038/s41598-021-90292-6.
9
Automated delineation of orbital abscess depicted on CT scan using deep learning.
Med Phys. 2021 Jul;48(7):3721-3729. doi: 10.1002/mp.14907. Epub 2021 May 16.

本文引用的文献

1
A Deep Learning Model to Triage Screening Mammograms: A Simulation Study.
Radiology. 2019 Oct;293(1):38-46. doi: 10.1148/radiol.2019182908. Epub 2019 Aug 6.
2
Machine learning and medical education.
NPJ Digit Med. 2018 Sep 27;1:54. doi: 10.1038/s41746-018-0061-1. eCollection 2018.
3
Artificial intelligence to diagnose meniscus tears on MRI.
Diagn Interv Imaging. 2019 Apr;100(4):243-249. doi: 10.1016/j.diii.2019.02.007. Epub 2019 Mar 28.
4
Automatic knee meniscus tear detection and orientation classification with Mask-RCNN.
Diagn Interv Imaging. 2019 Apr;100(4):235-242. doi: 10.1016/j.diii.2019.03.002. Epub 2019 Mar 23.
5
Diagnosing osteoarthritis from T maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort.
Osteoarthritis Cartilage. 2019 Jul;27(7):1002-1010. doi: 10.1016/j.joca.2019.02.800. Epub 2019 Mar 21.
6
Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks.
Radiology. 2019 Apr;291(1):272. doi: 10.1148/radiol.2019194005.
7
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018 Nov 27;15(11):e1002699. doi: 10.1371/journal.pmed.1002699. eCollection 2018 Nov.
8
Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection.
Radiology. 2018 Oct;289(1):160-169. doi: 10.1148/radiol.2018172986. Epub 2018 Jul 31.
9
Current Applications and Future Impact of Machine Learning in Radiology.
Radiology. 2018 Aug;288(2):318-328. doi: 10.1148/radiol.2018171820. Epub 2018 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验