Chen Pan, Zhong Xiangli, Zorn Jacob A, Li Mingqiang, Sun Yuanwei, Abid Adeel Y, Ren Chuanlai, Li Yuehui, Li Xiaomei, Ma Xiumei, Wang Jinbin, Liu Kaihui, Xu Zhi, Tan Congbing, Chen Longqing, Gao Peng, Bai Xuedong
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2020 Apr 15;11(1):1840. doi: 10.1038/s41467-020-15616-y.
Ferroelectric vortices formed through complex lattice-charge interactions have great potential in applications for future nanoelectronics such as memories. For practical applications, it is crucial to manipulate these topological states under external stimuli. Here, we apply mechanical loads to locally manipulate the vortices in a PbTiO/SrTiO superlattice via atomically resolved in-situ scanning transmission electron microscopy. The vortices undergo a transition to the a-domain with in-plane polarization under external compressive stress and spontaneously recover after removal of the stress. We reveal the detailed transition process at the atomic scale and reproduce this numerically using phase-field simulations. These findings provide new pathways to control the exotic topological ferroelectric structures for future nanoelectronics and also valuable insights into understanding of lattice-charge interactions at nanoscale.
通过复杂的晶格-电荷相互作用形成的铁电涡旋在诸如存储器等未来纳米电子学应用中具有巨大潜力。对于实际应用而言,在外部刺激下操纵这些拓扑状态至关重要。在此,我们通过原子分辨原位扫描透射电子显微镜对PbTiO/SrTiO超晶格施加机械载荷以局部操纵涡旋。在外部压缩应力作用下,涡旋会转变为具有面内极化的a畴,并在去除应力后自发恢复。我们揭示了原子尺度上的详细转变过程,并使用相场模拟进行了数值再现。这些发现为未来纳米电子学控制奇异拓扑铁电结构提供了新途径,也为理解纳米尺度上的晶格-电荷相互作用提供了有价值的见解。