Fujii Susumu, Yokoi Tatsuya, Fisher Craig A J, Moriwake Hiroki, Yoshiya Masato
Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.
Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
Nat Commun. 2020 Apr 15;11(1):1854. doi: 10.1038/s41467-020-15619-9.
Quantifying the dependence of thermal conductivity on grain boundary (GB) structure is critical for controlling nanoscale thermal transport in many technologically important materials. A major obstacle to determining such a relationship is the lack of a robust and physically intuitive structure descriptor capable of distinguishing between disparate GB structures. We demonstrate that a microscopic structure metric, the local distortion factor, correlates well with atomically decomposed thermal conductivities obtained from perturbed molecular dynamics for a wide variety of MgO GBs. Based on this correlation, a model for accurately predicting thermal conductivity of GBs is constructed using machine learning techniques. The model reveals that small distortions to local atomic environments are sufficient to reduce overall thermal conductivity dramatically. The method developed should enable more precise design of next-generation thermal materials as it allows GB structures exhibiting the desired thermal transport behaviour to be identified with small computational overhead.
量化热导率对晶界(GB)结构的依赖性对于控制许多具有重要技术意义的材料中的纳米级热输运至关重要。确定这种关系的一个主要障碍是缺乏一种强大且物理直观的结构描述符,能够区分不同的GB结构。我们证明,一种微观结构度量,即局部畸变因子,与通过对多种MgO晶界进行扰动分子动力学获得的原子分解热导率具有良好的相关性。基于这种相关性,利用机器学习技术构建了一个准确预测晶界热导率的模型。该模型表明,局部原子环境的微小畸变足以显著降低整体热导率。所开发的方法应该能够实现下一代热材料的更精确设计,因为它允许以较小的计算开销识别出具有所需热输运行为的GB结构。