Department of Physics, University of Texas at Dallas, Richardson, TX 75080, USA.
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Science. 2018 Aug 10;361(6402):579-581. doi: 10.1126/science.aat8982. Epub 2018 Jul 5.
The high density of heat generated in power electronics and optoelectronic devices is a critical bottleneck in their application. New materials with high thermal conductivity are needed to effectively dissipate heat and thereby enable enhanced performance of power controls, solid-state lighting, communication, and security systems. We report the experimental discovery of high thermal conductivity at room temperature in cubic boron arsenide (BAs) grown through a modified chemical vapor transport technique. The thermal conductivity of BAs, 1000 ± 90 watts per meter per kelvin meter-kelvin, is higher than that of silicon carbide by a factor of 3 and is surpassed only by diamond and the basal-plane value of graphite. This work shows that BAs represents a class of ultrahigh-thermal conductivity materials predicted by a recent theory, and that it may constitute a useful thermal management material for high-power density electronic devices.
在电力电子和光电子器件中产生的高密度热量是其应用的一个关键瓶颈。需要具有高热导率的新材料来有效地散热,从而实现功率控制、固态照明、通信和安全系统的性能提升。我们报告了通过改进的化学气相输运技术生长的立方硼砷化物(BAs)在室温下具有高热导率的实验发现。BAs 的热导率为 1000 ± 90 瓦/米·开尔文·米-开尔文,比碳化硅高 3 倍,仅低于金刚石和石墨的基面值。这项工作表明,BAs 代表了一类由最近的理论预测的超高热导率材料,并且它可能成为高功率密度电子器件的有用热管理材料。