Suppr超能文献

采用系统方法更好地治疗重度哮喘患者的需求:预测表型和治疗反应

Needs for Systems Approaches to Better Treat Individuals With Severe Asthma: Predicting Phenotypes and Responses to Treatments.

作者信息

Colas Luc, Hassoun Dorian, Magnan Antoine

机构信息

Nantes Université, CHU de Nantes, Plateforme Transversale d'Allergologie, Nantes, France.

Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.

出版信息

Front Med (Lausanne). 2020 Mar 31;7:98. doi: 10.3389/fmed.2020.00098. eCollection 2020.

Abstract

Asthma is a frequent heterogeneous multifactorial chronic disease whose severe forms remain largely uncontrolled despite the availability of many drugs and educational therapy. Several phenotypes and endotypes of severe asthma have been described over the last two decades. Typical type-2-immunity-driven asthma remains the most frequent phenotype, and several targeted therapies have been developed and are now available. On the contrary, non-type-2 immunity-driven severe asthma is less understood and still requires efficient innovative therapies. A personalized approach would allow improving asthma control with the help of robust biomarkers able to predict phenotypes/endotypes, exacerbations, response to targeted treatments and, in the future, possible curative options. Some data from large multicenter cohorts have emerged in recent years, especially in transcriptomics. These data have to be integrated and reproduced longitudinally to provide a systems approach for asthma care. In this focused review, the needs for such an approach and the available data will be reviewed as well as the next steps for achieving personalized medicine in asthma.

摘要

哮喘是一种常见的异质性多因素慢性疾病,尽管有多种药物和教育疗法,但严重形式的哮喘在很大程度上仍未得到有效控制。在过去二十年中,已经描述了几种严重哮喘的表型和内型。典型的2型免疫驱动型哮喘仍然是最常见的表型,并且已经开发出几种靶向疗法,现在已有应用。相反,非2型免疫驱动型严重哮喘的了解较少,仍然需要有效的创新疗法。个性化方法将有助于借助强大的生物标志物改善哮喘控制,这些生物标志物能够预测表型/内型、病情加重情况、对靶向治疗的反应,以及未来可能的治愈方案。近年来,来自大型多中心队列的一些数据已经出现,特别是在转录组学方面。这些数据必须纵向整合和再现,以提供一种哮喘护理的系统方法。在这篇重点综述中,将回顾这种方法的需求和可用数据,以及在哮喘中实现个性化医疗的下一步措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512b/7137032/5abccc86685f/fmed-07-00098-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验