Suppr超能文献

深度卷积神经网络在超广角图像上检测色素性视网膜炎的准确性。

Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images.

作者信息

Masumoto Hiroki, Tabuchi Hitoshi, Nakakura Shunsuke, Ohsugi Hideharu, Enno Hiroki, Ishitobi Naofumi, Ohsugi Eiko, Mitamura Yoshinori

机构信息

Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan.

Rist Inc., Tokyo, Japan.

出版信息

PeerJ. 2019 May 7;7:e6900. doi: 10.7717/peerj.6900. eCollection 2019.

Abstract

Evaluating the discrimination ability of a deep convolution neural network for ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence of retinitis pigmentosa. In total, the 373 ultrawide-field pseudocolor and ultrawide-field autofluorescence images (150, retinitis pigmentosa; 223, normal) obtained from the patients who visited the Department of Ophthalmology, Tsukazaki Hospital were used. Training with a convolutional neural network on these learning data objects was conducted. We examined the -fold cross validation ( = 5). The mean area under the curve of the ultrawide-field pseudocolor group was 0.998 (95% confidence interval (CI) [0.9953-1.0]) and that of the ultrawide-field autofluorescence group was 1.0 (95% CI [0.9994-1.0]). The sensitivity and specificity of the ultrawide-field pseudocolor group were 99.3% (95% CI [96.3%-100.0%]) and 99.1% (95% CI [96.1%-99.7%]), and those of the ultrawide-field autofluorescence group were 100% (95% CI [97.6%-100%]) and 99.5% (95% CI [96.8%-99.9%]), respectively. Heatmaps were in accordance with the clinician's observations. Using the proposed deep neural network model, retinitis pigmentosa can be distinguished from healthy eyes with high sensitivity and specificity on ultrawide-field pseudocolor and ultrawide-field autofluorescence images.

摘要

评估深度卷积神经网络对视网膜色素变性超宽视野伪彩色成像和超宽视野自发荧光的鉴别能力。总共使用了从冢崎医院眼科就诊患者处获得的373张超宽视野伪彩色和超宽视野自发荧光图像(150张为视网膜色素变性;223张为正常)。对这些学习数据对象进行卷积神经网络训练。我们进行了五折交叉验证(k = 5)。超宽视野伪彩色组的曲线下平均面积为0.998(95%置信区间[CI][0.9953 - 1.0]),超宽视野自发荧光组的曲线下平均面积为1.0(95%CI[0.9994 - 1.0])。超宽视野伪彩色组的敏感性和特异性分别为99.3%(95%CI[96.3% - 100.0%])和99.1%(95%CI[96.1% - 99.7%]),超宽视野自发荧光组的敏感性和特异性分别为100%(95%CI[97.6% - 100%])和99.5%(95%CI[96.8% - 99.9%])。热图与临床医生的观察结果一致。使用所提出的深度神经网络模型,可以在超宽视野伪彩色和超宽视野自发荧光图像上以高敏感性和特异性将视网膜色素变性与健康眼睛区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f341/6510218/7636d4d9527a/peerj-07-6900-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验