Suppr超能文献

深度卷积神经网络在超广角图像上检测色素性视网膜炎的准确性。

Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images.

作者信息

Masumoto Hiroki, Tabuchi Hitoshi, Nakakura Shunsuke, Ohsugi Hideharu, Enno Hiroki, Ishitobi Naofumi, Ohsugi Eiko, Mitamura Yoshinori

机构信息

Department of Ophthalmology, Tsukazaki Hospital, Himeji, Japan.

Rist Inc., Tokyo, Japan.

出版信息

PeerJ. 2019 May 7;7:e6900. doi: 10.7717/peerj.6900. eCollection 2019.

Abstract

Evaluating the discrimination ability of a deep convolution neural network for ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence of retinitis pigmentosa. In total, the 373 ultrawide-field pseudocolor and ultrawide-field autofluorescence images (150, retinitis pigmentosa; 223, normal) obtained from the patients who visited the Department of Ophthalmology, Tsukazaki Hospital were used. Training with a convolutional neural network on these learning data objects was conducted. We examined the -fold cross validation ( = 5). The mean area under the curve of the ultrawide-field pseudocolor group was 0.998 (95% confidence interval (CI) [0.9953-1.0]) and that of the ultrawide-field autofluorescence group was 1.0 (95% CI [0.9994-1.0]). The sensitivity and specificity of the ultrawide-field pseudocolor group were 99.3% (95% CI [96.3%-100.0%]) and 99.1% (95% CI [96.1%-99.7%]), and those of the ultrawide-field autofluorescence group were 100% (95% CI [97.6%-100%]) and 99.5% (95% CI [96.8%-99.9%]), respectively. Heatmaps were in accordance with the clinician's observations. Using the proposed deep neural network model, retinitis pigmentosa can be distinguished from healthy eyes with high sensitivity and specificity on ultrawide-field pseudocolor and ultrawide-field autofluorescence images.

摘要

评估深度卷积神经网络对视网膜色素变性超宽视野伪彩色成像和超宽视野自发荧光的鉴别能力。总共使用了从冢崎医院眼科就诊患者处获得的373张超宽视野伪彩色和超宽视野自发荧光图像(150张为视网膜色素变性;223张为正常)。对这些学习数据对象进行卷积神经网络训练。我们进行了五折交叉验证(k = 5)。超宽视野伪彩色组的曲线下平均面积为0.998(95%置信区间[CI][0.9953 - 1.0]),超宽视野自发荧光组的曲线下平均面积为1.0(95%CI[0.9994 - 1.0])。超宽视野伪彩色组的敏感性和特异性分别为99.3%(95%CI[96.3% - 100.0%])和99.1%(95%CI[96.1% - 99.7%]),超宽视野自发荧光组的敏感性和特异性分别为100%(95%CI[97.6% - 100%])和99.5%(95%CI[96.8% - 99.9%])。热图与临床医生的观察结果一致。使用所提出的深度神经网络模型,可以在超宽视野伪彩色和超宽视野自发荧光图像上以高敏感性和特异性将视网膜色素变性与健康眼睛区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f341/6510218/7636d4d9527a/peerj-07-6900-g001.jpg

相似文献

2
Estimation of Visual Function Using Deep Learning From Ultra-Widefield Fundus Images of Eyes With Retinitis Pigmentosa.
JAMA Ophthalmol. 2023 Apr 1;141(4):305-313. doi: 10.1001/jamaophthalmol.2022.6393.
3
Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy.
J Ophthalmol. 2018 Nov 1;2018:1875431. doi: 10.1155/2018/1875431. eCollection 2018.
4
Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion.
Int J Ophthalmol. 2019 Jan 18;12(1):94-99. doi: 10.18240/ijo.2019.01.15. eCollection 2019.
6
Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy.
Int Ophthalmol. 2019 Oct;39(10):2153-2159. doi: 10.1007/s10792-019-01074-z. Epub 2019 Feb 23.
7
AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING.
Retina. 2024 Jun 1;44(6):1034-1044. doi: 10.1097/IAE.0000000000004049.
8
Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning.
Asia Pac J Ophthalmol (Phila). 2023;12(3):284-292. doi: 10.1097/APO.0000000000000599. Epub 2023 Feb 20.
9
Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.
Clin Ophthalmol. 2013;7:203-10. doi: 10.2147/OPTH.S39879. Epub 2013 Jan 23.

引用本文的文献

1
Deep learning-based classification of multiple fundus diseases using ultra-widefield images.
Front Cell Dev Biol. 2025 Jul 17;13:1630667. doi: 10.3389/fcell.2025.1630667. eCollection 2025.
3
A deep learning model for diagnosis of inherited retinal diseases.
Sci Rep. 2025 Jul 2;15(1):22523. doi: 10.1038/s41598-025-04648-3.
6
Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks.
Jpn J Ophthalmol. 2025 Mar;69(2):236-244. doi: 10.1007/s10384-025-01163-w. Epub 2025 Feb 12.
7
Machine learning demonstrates clinical utility in distinguishing retinoblastoma from pseudo retinoblastoma with RetCam images.
Ophthalmic Genet. 2025 Apr;46(2):180-185. doi: 10.1080/13816810.2025.2455576. Epub 2025 Jan 20.
9
Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images.
Int J Ophthalmol. 2024 Jan 18;17(1):188-200. doi: 10.18240/ijo.2024.01.24. eCollection 2024.
10
Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images.
Diagnostics (Basel). 2024 Jan 3;14(1):105. doi: 10.3390/diagnostics14010105.

本文引用的文献

1
Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy.
J Ophthalmol. 2018 Nov 1;2018:1875431. doi: 10.1155/2018/1875431. eCollection 2018.
4
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
8
Wide-field fundus autofluorescence imaging of retinitis pigmentosa.
Ophthalmology. 2013 Sep;120(9):1827-34. doi: 10.1016/j.ophtha.2013.01.050. Epub 2013 Apr 28.
10
Understanding diagnostic tests 3: Receiver operating characteristic curves.
Acta Paediatr. 2007 May;96(5):644-7. doi: 10.1111/j.1651-2227.2006.00178.x. Epub 2007 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验