Peng Bosen, Mu Jiancheng, Xu Feng, Guo Wanyue, Sun Chuhuan, Fan Wei
Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
Front Med (Lausanne). 2025 Jul 1;12:1580583. doi: 10.3389/fmed.2025.1580583. eCollection 2025.
PURPOSE: This study aims to generate and elucidate the latest perspectives on the application of artificial intelligence (AI) in ophthalmology using bibliometric methods. By analyzing literature from the past 5 years (2020-2024), we seek to outline the development trends of this technology, provide guidance for its future directions, and assist clinicians in adapting to these innovations. METHODS: We conducted a comprehensive search of all literature related to AI and ophthalmology in the Web of Science Core Collection (WoSCC) using bibliometric methods. The collected data were analyzed and visualized using three widely recognized bibliometric software tools: CiteSpace, VOSviewer, and the R package "Bibliometrix." RESULTS: A total of 21,725 documents were included from 134 countries and 7,126 institutions, consisting of 19,978 articles (91.96%) and 1,714 reviews (8.04%), with China and the United States leading the contributions. The number of publications in AI and ophthalmology has increased annually, with the University of California System, the National University of Singapore, and the University of London being the primary research institutions. Ophthalmology and Proc CVPR IEEE are the most co-cited journals and conferences in this field. These papers were authored by 87,695 individuals, with Wang Y, Liu Y, and Zhang Y the most prolific authors. Ting DSW was the most co-cited author. Major research topics include using various models to scan retinal images for diagnosing conditions such as age-related macular degeneration, diabetic retinopathy, and retinal nerve fiber layer thinning caused by glaucoma. The intersection of AI with other subfields of ophthalmology, such as in the diagnosis of ametropia, strabismus, eyelid disease, and orbital tumors, as well as in postoperative follow-up, is also rapidly developing. Key research hot spots are identified by keywords such as "deep learning," "machine learning," "convolutional neural network," "diabetic retinopathy," and "ophthalmology." CONCLUSION: Our bibliometric analysis outlines the dynamic evolution and structural relationships within the AI and ophthalmology field. In contrast to previous studies, our research transcends individual domains to offer a more comprehensive insight. Notably, our analysis encompasses literature published beyond the year 2022, a pivotal year marking both the post-pandemic era and the rapid advancement of AI technologies. This temporal scope potentially fills a gap that prior bibliometric studies have not addressed. This information identifies recent research frontiers and hot spot areas, providing valuable reference points for scholars engaging in future AI and ophthalmology studies.
目的:本研究旨在运用文献计量学方法,生成并阐明人工智能(AI)在眼科应用方面的最新观点。通过分析过去5年(2020 - 2024年)的文献,我们试图勾勒出这项技术的发展趋势,为其未来方向提供指导,并帮助临床医生适应这些创新。 方法:我们运用文献计量学方法,在科学网核心合集(WoSCC)中对所有与AI和眼科相关的文献进行了全面检索。使用三种广泛认可的文献计量学软件工具:CiteSpace、VOSviewer和R包“Bibliometrix”对收集到的数据进行分析和可视化处理。 结果:共纳入来自134个国家和7126个机构的21725篇文献,其中包括19978篇文章(91.96%)和1714篇综述(8.04%),中国和美国的贡献最为突出。AI与眼科领域的出版物数量逐年增加,加利福尼亚大学系统、新加坡国立大学和伦敦大学是主要研究机构。《眼科学》和《IEEE计算机视觉与模式识别会议论文集》是该领域被引频次最高的期刊和会议。这些论文由87695人撰写,王Y、刘Y和张Y是发文量最多的作者。丁DSW是被引频次最高的作者。主要研究主题包括使用各种模型扫描视网膜图像,以诊断年龄相关性黄斑变性、糖尿病视网膜病变和青光眼导致的视网膜神经纤维层变薄等病症。AI与眼科其他子领域的交叉研究,如在屈光不正、斜视、眼睑疾病和眼眶肿瘤的诊断以及术后随访中的应用,也在迅速发展。通过“深度学习”“机器学习”“卷积神经网络”“糖尿病视网膜病变”和“眼科学”等关键词确定了关键研究热点。 结论:我们的文献计量分析勾勒出了AI与眼科领域内的动态演变和结构关系。与以往研究不同,我们的研究超越了单个领域,提供了更全面的见解。值得注意的是,我们的分析涵盖了2022年以后发表的文献,2022年是大流行后时代和AI技术快速发展的关键一年。这一时间范围可能填补了以往文献计量研究未涉及的空白。这些信息确定了近期的研究前沿和热点领域,为从事未来AI与眼科研究的学者提供了有价值的参考点。
Front Med (Lausanne). 2025-7-1
Front Oncol. 2025-6-30
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2024-10-17
Front Neurosci. 2023-11-20
Adv Exp Med Biol. 2024
Front Cell Infect Microbiol. 2024
Transl Vis Sci Technol. 2024-5-1