Department of Chemical Engineering, Chemical Engineering and Mineral Industries School, University of Ngaoundere, 454 Ngaoundere, Cameroon; Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Muğla Sitki Koçman University, Muğla, Ula, 48147, Turkey; Department of Chemistry, Mugla Sitki Kocman University, 48000, Mugla, Turkey; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Muğla Sitki Koçman University, Muğla, Ula, 48147, Turkey.
Microb Pathog. 2020 Jul;144:104191. doi: 10.1016/j.micpath.2020.104191. Epub 2020 Apr 14.
The increasing resistance of bacteria to antibiotics has motivated the interest in potent natural compounds capable of disrupting bacterial cell-to-cell communication. Column chromatography of seed extract of Annona senegalensis afforded N-cerotoyltryptamine (1), asimicin (2) and ent-19-carbomethoxykauran-17-oic acid (3). The compounds were tested for their antimicrobial, antibiofilm, and anti-quorum sensing activities. The minimum inhibitory concentrations (MIC) values ranged from 50 μg/mL to 100 μg/mL for C. albicans ATCC 10239 and S. aureus ATCC 25923 E. coli ATCC 25922, C. violaceum CV026 and C. violaceum CV12472. All the compounds inhibited biofilm formations of all microorganisms tested in various percentages at MIC and MIC/2. Compound 2 also exhibited the highest antibiofilm activity against C. albicans (yeast) and E. coli with percentage inhibitions ranging from 6.3 ± 4.1 (MIC/4) to 37.9 ± 4.5 (MIC) for C. albicans and from 18.8 ± 1.1 (MIC/4) to 43.2 ± 0.5 (MIC) for E. coli. Compound 1, however, showed highest biofilm inhibition on S. aureus as the percentage inhibition varied from 26.7 ± 3.6 (MIC/4) to 43.8 ± 2.1 (MIC). Compound 2 showed highest percentage violacein inhibition on C. violaceum CV12472 ranging from 10.2 ± 0.5 (MIC/8), 65.76 ± 1.3 (MIC/2) and 100 (MIC). Compound 1 and 3 had percentage violacein formation inhibitions on C. violaceum CV12472 ranging from 9.66 ± 1.1 (MIC/4) to 100 (MIC), and from 17.4 ± 2.4 (MIC/4) to 100 (MIC), respectively. Swimming and swarming motility of P. aeruginosa PA01 strain was evaluated at three concentrations of 50, 75 and 100 μg/mL. The compounds inhibited the P. aeruginosa swimming and swarming motility at the three tested concentrations (50, 75 and 100 μg/ml) in a dose-dependent manner. The extents of inhibition of motility migration was relatively higher in the swimming model than in the swarming model for all compounds. Compound 1 exhibited the highest percentage inhibition of motility of 41.50 ± 3.5 and 39.73 ± 1.5 in swimming model and swarming model respectively at 100 μg/ml. Compound 3 showed the lowest percentage inhibition of 30.36 ± 2.0 and 23.50 ± 2.5 in swimming and swarming respectively at 100 μg/ml. At the lowest tested concentration of 50 μg/ml, it was compound 2 showing the highest inhibition of motility of 17.49 ± 0.5 and 14.29 ± 1.0 in swimming and swarming respectively. Compound 1 showed highest quorum sensing (QS) activity with QS inhibition zone of 20.0 ± 1.5 mm at MIC and 11.0 ± 1.0 mm at MIC/8 while compound 2 had the highest antimicrobial (AM) zone diameter amongst the compounds at MIC. Compound 3 was the QS inhibitory sample and did not show any QS inhibition at MIC/8 while showing its highest QS inhibition zone of 13.0 ± 1.6 mm at MIC. For antioxidant assays, no sample showed better activity than the standards. Compound 2 had highest activity with IC values of 87.79 ± 2.70 and 42.77 ± 1.53 μg/mL in DPPH and β-carotene-linoleic acid assay respectively and was more active (IC of 97.69 ± 1.40 μg/mL) than standard quercetin (IC 250.09 ± 0.87 μg/mL) in metal chelation assay.
随着细菌对抗生素的耐药性不断增强,人们对能够破坏细菌细胞间通讯的强效天然化合物产生了浓厚的兴趣。从番荔枝种子提取物中进行柱层析,得到 N-(十六酰基)色胺(1)、asimicin(2)和 ent-19-甲氧基甲酰基千里光酸(3)。测试了这些化合物的抗菌、抗生物膜和抗群体感应活性。最小抑菌浓度(MIC)值范围为 50μg/mL 至 100μg/mL,用于白色念珠菌 ATCC 10239 和金黄色葡萄球菌 ATCC 25923、大肠杆菌 ATCC 25922、紫色色杆菌 CV026 和紫色色杆菌 CV12472。所有化合物均以 MIC 和 MIC/2 的浓度抑制了所有测试微生物的生物膜形成,抑制率在不同百分比之间。化合物 2 对白色念珠菌(酵母)和大肠杆菌的抗生物膜活性最高,对白色念珠菌的抑制率范围为 6.3±4.1(MIC/4)至 37.9±4.5(MIC),对大肠杆菌的抑制率范围为 18.8±1.1(MIC/4)至 43.2±0.5(MIC)。然而,化合物 1 对金黄色葡萄球菌的生物膜抑制率最高,抑制率范围为 26.7±3.6(MIC/4)至 43.8±2.1(MIC)。化合物 2 在 CV12472 上显示出最高的紫色素抑制百分比,范围为 10.2±0.5(MIC/8)、65.76±1.3(MIC/2)和 100(MIC)。化合物 1 和 3 在 CV12472 上分别显示出 9.66±1.1(MIC/4)至 100(MIC)和 17.4±2.4(MIC/4)至 100(MIC)的紫色素形成抑制百分比。在三种浓度(50、75 和 100μg/ml)下,评估了铜绿假单胞菌 PA01 菌株的泳动和群集运动。化合物以剂量依赖性方式在三种测试浓度(50、75 和 100μg/ml)下抑制了铜绿假单胞菌的泳动和群集运动。在所有化合物中,泳动模型中的运动迁移抑制程度相对高于群集模型。化合物 1 在 100μg/ml 时泳动模型和群集模型的抑制率分别为 41.50±3.5%和 39.73±1.5%,抑制率最高。化合物 3 在 100μg/ml 时泳动和群集的抑制率分别为 30.36±2.0%和 23.50±2.5%,抑制率最低。在最低测试浓度 50μg/ml 时,化合物 2 显示出最高的运动抑制率,泳动和群集分别为 17.49±0.5%和 14.29±1.0%。化合物 1 显示出最高的群体感应(QS)活性,在 MIC 时的 QS 抑制带为 20.0±1.5mm,在 MIC/8 时为 11.0±1.0mm,而化合物 2 在 MIC 时显示出最高的抗菌(AM)直径。化合物 3 是 QS 抑制样品,在 MIC/8 时没有显示出任何 QS 抑制作用,而在 MIC 时显示出最高的 QS 抑制带为 13.0±1.6mm。对于抗氧化剂测定,没有样品比标准品显示出更好的活性。化合物 2 在 DPPH 和β-胡萝卜素-亚油酸测定中分别具有最高的活性,IC 值为 87.79±2.70 和 42.77±1.53μg/ml,并且在金属螯合测定中比标准品槲皮素(IC 250.09±0.87μg/ml)更活跃(IC 97.69±1.40μg/ml)。