Suppr超能文献

纵向人群老龄化研究中失访的预测因素。

Predictors of attrition in a longitudinal population-based study of aging.

机构信息

Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Int Psychogeriatr. 2021 Aug;33(8):767-778. doi: 10.1017/S1041610220000447. Epub 2020 Apr 17.

Abstract

BACKGROUND

Longitudinal studies predictably experience non-random attrition over time. Among older adults, risk factors for attrition may be similar to risk factors for outcomes such as cognitive decline and dementia, potentially biasing study results.

OBJECTIVE

To characterize participants lost to follow-up which can be useful in the study design and interpretation of results.

METHODS

In a longitudinal aging population study with 10 years of annual follow-up, we characterized the attrited participants (77%) compared to those who remained in the study. We used multivariable logistic regression models to identify attrition predictors. We then implemented four machine learning approaches to predict attrition status from one wave to the next and compared the results of all five approaches.

RESULTS

Multivariable logistic regression identified those more likely to drop out as older, male, not living with another study participant, having lower cognitive test scores and higher clinical dementia ratings, lower functional ability, fewer subjective memory complaints, no physical activity, reported hobbies, or engagement in social activities, worse self-rated health, and leaving the house less often. The four machine learning approaches using areas under the receiver operating characteristic curves produced similar discrimination results to the multivariable logistic regression model.

CONCLUSIONS

Attrition was most likely to occur in participants who were older, male, inactive, socially isolated, and cognitively impaired. Ignoring attrition would bias study results especially when the missing data might be related to the outcome (e.g. cognitive impairment or dementia). We discuss possible solutions including oversampling and other statistical modeling approaches.

摘要

背景

纵向研究随着时间的推移可预测地经历非随机失访。在老年人中,失访的风险因素可能与认知能力下降和痴呆等结局的风险因素相似,这可能会使研究结果产生偏差。

目的

描述失访参与者的特征,这对于研究设计和结果解释可能是有用的。

方法

在一项具有 10 年每年随访的纵向老龄化人群研究中,我们对失访者(77%)与仍留在研究中的参与者进行了特征描述。我们使用多变量逻辑回归模型来确定失访的预测因素。然后,我们实施了四种机器学习方法,从一个波次预测到下一个波次的失访状态,并比较了所有五种方法的结果。

结果

多变量逻辑回归确定了那些更有可能退出的参与者为年龄较大、男性、不与另一位研究参与者同住、认知测试得分较低和临床痴呆评分较高、功能能力较低、主观记忆抱怨较少、没有体育活动、报告爱好或参与社交活动、自我报告的健康状况较差和外出较少。使用受试者工作特征曲线下面积的四种机器学习方法产生了与多变量逻辑回归模型相似的区分结果。

结论

失访最有可能发生在年龄较大、男性、不活跃、社交孤立和认知受损的参与者中。忽略失访会使研究结果产生偏差,特别是当缺失数据可能与结局(例如认知障碍或痴呆)有关时。我们讨论了可能的解决方案,包括过采样和其他统计建模方法。

相似文献

1
Predictors of attrition in a longitudinal population-based study of aging.纵向人群老龄化研究中失访的预测因素。
Int Psychogeriatr. 2021 Aug;33(8):767-778. doi: 10.1017/S1041610220000447. Epub 2020 Apr 17.

引用本文的文献

5
Effective engagement in computerized cognitive training for older adults.老年人有效参与计算机化认知训练。
Ageing Res Rev. 2025 Feb;104:102650. doi: 10.1016/j.arr.2024.102650. Epub 2025 Jan 2.

本文引用的文献

10
Neuropsychiatric Symptoms in Mild Cognitive Impairment.轻度认知障碍中的神经精神症状
Can J Psychiatry. 2017 Mar;62(3):161-169. doi: 10.1177/0706743716648296.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验