Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Metallomics. 2020 May 27;12(5):654-667. doi: 10.1039/d0mt00034e.
Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 μmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.
铁是海洋生物泵的关键营养物质,海洋生物泵是将光合作用固定的碳从上层海洋输出到深海的过程。铁限制控制着海洋的主要区域的光合作用活性,随后被输出的光合作用物质的降解特别受到海洋异养细菌的促进。尽管它们在碳循环中很重要,而且海水中铁很稀缺,但这些海洋异养生物的铁需求、储存和细胞质利用情况研究较少。在这里,我们描述了假交替单胞菌(BB2-AT2)的铁金属组学。我们发现,假交替单胞菌有两个菌铁蛋白(Bfr),具有大量奢侈吸收铁的能力。整个细胞金属组中铁与碳的比例(假设 C 与 P 的化学计量比约为 51 比 1)估计在 83 μmol/mol Fe:C 左右,比之前的海洋细菌调查高约 11 倍。在这些充足的条件下,还观察到其他主要的细胞质铁相关蛋白,包括超氧化物歧化酶(SodA;在铁充足的条件下其他金属 SOD 同工酶不存在)和过氧化氢酶(KatG),参与活性氧应激缓解,以及 aconitase(AcnB)、琥珀酸脱氢酶(FrdB)和细胞色素(QcrA 和 Cyt1),参与呼吸作用。借助奇异值分解(SVD),我们能够计算出金属组中的峰与特定金属蛋白的贡献。与相关的交替单胞菌密切相关的 TonB 转运蛋白被认为与太平洋中层环境中的铁元素丰富有关。尽管海水中铁的含量非常稀缺,但海洋异养生物假交替单胞菌具有广泛的铁储存能力和利用策略,这意味着在碎屑和下沉颗粒环境中,有很大的机会获得铁。这些结果表明,海洋假交替单胞菌进化出了维持铁金属蛋白组的能力,这可能是由于其对铁基呼吸代谢的依赖。