Hogle Shane L, Thrash J Cameron, Dupont Chris L, Barbeau Katherine A
Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, California, USA
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
Appl Environ Microbiol. 2016 Jan 4;82(5):1613-1624. doi: 10.1128/AEM.03128-15.
Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.
SAR11和红杆菌谱系中的异养细菌塑造了海洋碳、氮、磷和硫循环,但它们采用了不同的生态策略来实现这一点。目前,尚不清楚这些具有全球重要意义的菌群在微量营养素(如痕量金属)方面是否划分到特定的生态位,以及这可能如何影响海洋痕量金属循环。在这里,我们使用比较基因组学来鉴定SAR11和红杆菌基因组中不同的铁、钴、镍、铜和锌摄取能力,并揭示谱系内部和谱系之间令人惊讶的不均衡性。金属摄取基因含量程度的最强预测因素是每个基因组的转运蛋白总数、基因组大小、总金属转运蛋白和GC含量,但两组中都存在许多例外情况。综合来看,我们的结果表明,SAR11极大地减少了其痕量金属摄取的通用性,高亲和力锌摄取是唯一的例外。较大的红杆菌基因组平均具有更大的痕量金属摄取通用性,但它们似乎也具有更大的可塑性,导致系统发育相似的基因组具有很大不同的能力。最终,系统发育可预测所有金属摄取系统中20%至33%的多样性和程度,这表明在SAR11和红杆菌中,金属利用的特化大多独立于整体谱系分化而发生。我们将这些结果解释为反映了两个谱系中相对较新的痕量金属生态位划分情况,这表明海洋环境中金属的浓度和化学形式是塑造SAR11和红杆菌谱系海洋异养α-变形菌基因含量的重要因素。