Suppr超能文献

金属有机框架封装的三苯基膦原位磷化以设计原子Co-PN界面结构用于提升催化性能

In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal-Organic Frameworks to Design Atomic Co-PN Interfacial Structure for Promoting Catalytic Performance.

作者信息

Wan Jiawei, Zhao Zhenghang, Shang Huishan, Peng Bo, Chen Wenxing, Pei Jiajing, Zheng Lirong, Dong Juncai, Cao Rui, Sarangi Ritimukta, Jiang Zhuoli, Zhou Danni, Zhuang Zhongbin, Zhang Jiatao, Wang Dingsheng, Li Yadong

机构信息

Department of Chemistry, Tsinghua University, Beijing 100084, China.

SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States.

出版信息

J Am Chem Soc. 2020 May 6;142(18):8431-8439. doi: 10.1021/jacs.0c02229. Epub 2020 Apr 26.

Abstract

The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-N (MN) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co-PN interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co-PN interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm and a small Tafel slope of 47 mV dec, which are greatly superior to those of catalyst with Co-N interfacial structure. We discover that the bond-length-extended high-valence Co-PN atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.

摘要

工程协调环境为孤立金属单原子催化剂的性能可调性提供了巨大机遇。对于最常见的金属-N(MN)结构,用一些电负性相对较弱的其他原子取代N原子,被认为是优化活性金属中心配位环境并提升其催化性能的一种有前景的策略,但这仍然是一个挑战。在此,我们提出了一种新的合成策略,即对封装在金属有机框架内的三苯基膦进行原位磷化,以设计原子Co-PN界面结构,其中一个钴单原子由一个P原子和三个N原子共同稳定(表示为Co-SA/P-原位)。在酸性介质中,具有Co-PN界面结构的Co-SA/P-原位催化剂在析氢反应(HER)中表现出优异的活性和耐久性,在10 mA cm时过电位低至98 mV,塔菲尔斜率小至47 mV dec,这大大优于具有Co-N界面结构的催化剂。我们发现键长延长的高价Co-PN原子界面结构在提升HER性能方面起着关键作用,原位X射线吸收精细结构(XAFS)测量和密度泛函理论(DFT)计算支持了这一点。我们希望这项工作将推动高性能金属单原子催化剂的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验