Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia.
The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia.
J Biol Chem. 2020 May 22;295(21):7404-7417. doi: 10.1074/jbc.RA120.012842. Epub 2020 Apr 17.
G protein-coupled receptors (GPCRs) use a series of conserved microswitches to transmit signals across the cell membrane via an allosteric network encompassing the ligand-binding site and the G protein-binding site. Crystal structures of GPCRs provide snapshots of their inactive and active states, but poorly describe the conformational dynamics of the allosteric network that underlies GPCR activation. Here, we analyzed the correlation between ligand binding and receptor conformation of the α-adrenoreceptor, a GPCR that stimulates smooth muscle contraction in response to binding noradrenaline. NMR of [CH]methionine-labeled α-adrenoreceptor variants, each exhibiting differing signaling capacities, revealed how different classes of ligands modulate the conformational equilibria of this receptor. [CH]Methionine residues near the microswitches exhibited distinct states that correlated with ligand efficacies, supporting a conformational selection mechanism. We propose that allosteric coupling among the microswitches controls the conformation of the α-adrenoreceptor and underlies the mechanism of ligand modulation of GPCR signaling in cells.
G 蛋白偶联受体(GPCRs)通过包含配体结合位点和 G 蛋白结合位点的变构网络,利用一系列保守的微开关将信号传递穿过细胞膜。GPCR 的晶体结构提供了其非活性和活性状态的快照,但对构成 GPCR 激活基础的变构网络的构象动力学描述得很差。在这里,我们分析了与配体结合和受体构象的相关性的α-肾上腺素能受体,这是一种 GPCR,它响应结合去甲肾上腺素刺激平滑肌收缩。[CH]甲硫氨酸标记的 α-肾上腺素能受体变体的 NMR,每个变体表现出不同的信号转导能力,揭示了不同类别的配体如何调节这种受体的构象平衡。微开关附近的 [CH]甲硫氨酸残基表现出与配体效力相关的不同状态,支持构象选择机制。我们提出,微开关之间的变构耦合控制着 α-肾上腺素能受体的构象,并构成了细胞中配体调节 GPCR 信号转导的机制。