Suppr超能文献

具有先验子空间信息的低张量秩加稀疏张量恢复

Low-Tubal-Rank Plus Sparse Tensor Recovery With Prior Subspace Information.

作者信息

Zhang Feng, Wang Jianjun, Wang Wendong, Xu Chen

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3492-3507. doi: 10.1109/TPAMI.2020.2986773. Epub 2021 Sep 2.

Abstract

Tensor principal component pursuit (TPCP) is a powerful approach in the tensor robust principal component analysis (TRPCA), where the goal is to decompose a data tensor to a low-tubal-rank part plus a sparse residual. TPCP is shown to be effective under certain tensor incoherence conditions, which can be restrictive in practice. In this paper, we propose a Modified-TPCP, which incorporates the prior subspace information in the analysis. With the aid of prior info, the proposed method is able to recover the low-tubal-rank and the sparse components under a significantly weaker incoherence assumption. We further design an efficient algorithm to implement Modified-TPCP based upon the alternating direction method of multipliers (ADMM). The promising performance of the proposed method is supported by simulations and real data applications.

摘要

张量主成分追踪(TPCP)是张量鲁棒主成分分析(TRPCA)中的一种强大方法,其目标是将数据张量分解为低管秩部分加上稀疏残差。TPCP在某些张量不相干条件下被证明是有效的,但在实际中可能具有局限性。在本文中,我们提出了一种改进的TPCP(Modified-TPCP),它在分析中纳入了先验子空间信息。借助先验信息,所提出的方法能够在显著较弱的不相干假设下恢复低管秩和稀疏成分。我们进一步基于乘子交替方向法(ADMM)设计了一种高效算法来实现改进的TPCP。仿真和实际数据应用支持了所提出方法的良好性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验