Suppr超能文献

神经传感器:利用可编程传感器学习用于HDR成像和视频压缩感知的像素曝光

Neural Sensors: Learning Pixel Exposures for HDR Imaging and Video Compressive Sensing With Programmable Sensors.

作者信息

Martel Julien N P, Muller Lorenz K, Carey Stephen J, Dudek Piotr, Wetzstein Gordon

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Jul;42(7):1642-1653. doi: 10.1109/TPAMI.2020.2986944. Epub 2020 Apr 13.

Abstract

Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits the sensors' ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial light modulators to optically implement these exposure functions. Here, we introduce neural sensors as a methodology to optimize per-pixel shutter functions jointly with a differentiable image processing method, such as a neural network, in an end-to-end fashion. Moreover, we demonstrate how to leverage emerging programmable and re-configurable sensor-processors to implement the optimized exposure functions directly on the sensor. Our system takes specific limitations of the sensor into account to optimize physically feasible optical codes and we evaluate its performance for snapshot HDR and high-speed compressive imaging both in simulation and experimentally with real scenes.

摘要

相机传感器依靠全局或卷帘快门功能来曝光图像。这种固定功能的方法严重限制了传感器捕捉高动态范围(HDR)场景和解析高速动态的能力。空间变化的像素曝光已被引入,作为一种强大的计算摄影方法,用于在传感器上对辐照度进行光学编码,并通过计算恢复场景的额外信息,但现有方法依赖于启发式编码方案和笨重的空间光调制器来光学实现这些曝光功能。在这里,我们引入神经传感器作为一种方法,以端到端的方式与可微图像处理方法(如神经网络)联合优化每个像素的快门功能。此外,我们展示了如何利用新兴的可编程和可重新配置的传感器处理器直接在传感器上实现优化的曝光功能。我们的系统考虑了传感器的特定限制,以优化物理上可行的光学编码,并在模拟和真实场景实验中评估其在快照HDR和高速压缩成像方面的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验