Kim Minjoo, Kim Yelim, Park Won Il
Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea.
Light Sci Appl. 2025 Jul 22;14(1):248. doi: 10.1038/s41377-025-01904-z.
This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.
本研究介绍了一种基于光学神经网络(ONN)的自动编码器,用于高效图像处理,利用专门的光学矩阵-向量乘法器进行编码和解码任务。为应对高效解码中的挑战,我们提出一种通过标量乘法优化输出处理的方法,提高生成高维输出时的性能。通过采用系统内迭代调谐,我们减轻硬件缺陷和噪声,逐步将图像重建精度提高到接近数字质量。此外,我们的方法支持降噪和光学图像生成,适用于去噪自动编码器、变分自动编码器和生成对抗网络等模型。我们的结果表明,基于ONN的系统有可能超越传统电子系统的能源效率,在医学成像、自动驾驶车辆和边缘计算等应用中实现实时、低功耗的图像处理。