Suppr超能文献

利用光学矩阵向量乘法器实现编码和解码任务的图像处理。

Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks.

作者信息

Kim Minjoo, Kim Yelim, Park Won Il

机构信息

Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea.

出版信息

Light Sci Appl. 2025 Jul 22;14(1):248. doi: 10.1038/s41377-025-01904-z.

Abstract

This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.

摘要

本研究介绍了一种基于光学神经网络(ONN)的自动编码器,用于高效图像处理,利用专门的光学矩阵-向量乘法器进行编码和解码任务。为应对高效解码中的挑战,我们提出一种通过标量乘法优化输出处理的方法,提高生成高维输出时的性能。通过采用系统内迭代调谐,我们减轻硬件缺陷和噪声,逐步将图像重建精度提高到接近数字质量。此外,我们的方法支持降噪和光学图像生成,适用于去噪自动编码器、变分自动编码器和生成对抗网络等模型。我们的结果表明,基于ONN的系统有可能超越传统电子系统的能源效率,在医学成像、自动驾驶车辆和边缘计算等应用中实现实时、低功耗的图像处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1c/12284195/ae71eb40f95f/41377_2025_1904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验