Suppr超能文献

一种用于组织病理学图像分析的新的基于属性的对称多实例学习方法。

A Novel Attribute-Based Symmetric Multiple Instance Learning for Histopathological Image Analysis.

出版信息

IEEE Trans Med Imaging. 2020 Oct;39(10):3125-3136. doi: 10.1109/TMI.2020.2987796. Epub 2020 Apr 14.

Abstract

Histopathological image analysis is a challenging task due to a diverse histology feature set as well as due to the presence of large non-informative regions in whole slide images. In this paper, we propose a multiple-instance learning (MIL) method for image-level classification as well as for annotating relevant regions in the image. In MIL, a common assumption is that negative bags contain only negative instances while positive bags contain one or more positive instances. This asymmetric assumption may be inappropriate for some application scenarios where negative bags also contain representative negative instances. We introduce a novel symmetric MIL framework associating each instance in a bag with an attribute which can be either negative, positive, or irrelevant. We extend the notion of relevance by introducing control over the number of relevant instances. We develop a probabilistic graphical model that incorporates the aforementioned paradigm and a corresponding computationally efficient inference for learning the model parameters and obtaining an instance level attribute-learning classifier. The effectiveness of the proposed method is evaluated on available histopathology datasets with promising results.

摘要

组织病理学图像分析是一项具有挑战性的任务,这是由于组织学特征集的多样性,以及整个幻灯片图像中存在大量非信息区域。在本文中,我们提出了一种用于图像级分类以及对图像中相关区域进行注释的多实例学习(MIL)方法。在 MIL 中,一个常见的假设是负袋仅包含负实例,而正袋包含一个或多个正实例。对于某些应用场景,这种不对称的假设可能不合适,因为负袋也包含有代表性的负实例。我们引入了一种新的对称 MIL 框架,将每个袋中的实例与一个属性相关联,该属性可以是负、正或无关。我们通过引入对相关实例数量的控制来扩展相关性的概念。我们开发了一个概率图形模型,该模型结合了上述范例和一种相应的计算效率推理,用于学习模型参数并获得实例级属性学习分类器。所提出的方法在可用的组织病理学数据集上进行了评估,结果令人鼓舞。

相似文献

3
A similarity-based classification framework for multiple-instance learning.基于相似性的多示例学习分类框架。
IEEE Trans Cybern. 2014 Apr;44(4):500-15. doi: 10.1109/TCYB.2013.2257749. Epub 2013 May 16.
8
A Sphere-Description-Based Approach for Multiple-Instance Learning.基于球描述的多示例学习方法。
IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):242-257. doi: 10.1109/TPAMI.2016.2539952. Epub 2016 Mar 9.
10
Proportion constrained weakly supervised histopathology image classification.比例约束的弱监督组织病理学图像分类。
Comput Biol Med. 2022 Aug;147:105714. doi: 10.1016/j.compbiomed.2022.105714. Epub 2022 Jun 10.

本文引用的文献

1
Machine Learning Methods for Histopathological Image Analysis.用于组织病理学图像分析的机器学习方法
Comput Struct Biotechnol J. 2018 Feb 9;16:34-42. doi: 10.1016/j.csbj.2018.01.001. eCollection 2018.
3
Dynamic Programming for Instance Annotation in Multi-Instance Multi-Label Learning.动态规划在多实例多标签学习中的实例标注。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2381-2394. doi: 10.1109/TPAMI.2017.2647944. Epub 2017 Jan 5.
4
Co-Saliency Detection via a Self-Paced Multiple-Instance Learning Framework.基于自定步多示例学习框架的协同显著目标检测
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):865-878. doi: 10.1109/TPAMI.2016.2567393. Epub 2016 May 12.
5
Multiple-Instance Learning for Anomaly Detection in Digital Mammography.基于多示例学习的数字乳腺图像异常检测
IEEE Trans Med Imaging. 2016 Jul;35(7):1604-14. doi: 10.1109/TMI.2016.2521442. Epub 2016 Jan 25.
10
Robust Object Tracking with Online Multiple Instance Learning.基于在线多示例学习的鲁棒目标跟踪。
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1619-32. doi: 10.1109/TPAMI.2010.226. Epub 2010 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验