IEEE Trans Med Imaging. 2020 Oct;39(10):3125-3136. doi: 10.1109/TMI.2020.2987796. Epub 2020 Apr 14.
Histopathological image analysis is a challenging task due to a diverse histology feature set as well as due to the presence of large non-informative regions in whole slide images. In this paper, we propose a multiple-instance learning (MIL) method for image-level classification as well as for annotating relevant regions in the image. In MIL, a common assumption is that negative bags contain only negative instances while positive bags contain one or more positive instances. This asymmetric assumption may be inappropriate for some application scenarios where negative bags also contain representative negative instances. We introduce a novel symmetric MIL framework associating each instance in a bag with an attribute which can be either negative, positive, or irrelevant. We extend the notion of relevance by introducing control over the number of relevant instances. We develop a probabilistic graphical model that incorporates the aforementioned paradigm and a corresponding computationally efficient inference for learning the model parameters and obtaining an instance level attribute-learning classifier. The effectiveness of the proposed method is evaluated on available histopathology datasets with promising results.
组织病理学图像分析是一项具有挑战性的任务,这是由于组织学特征集的多样性,以及整个幻灯片图像中存在大量非信息区域。在本文中,我们提出了一种用于图像级分类以及对图像中相关区域进行注释的多实例学习(MIL)方法。在 MIL 中,一个常见的假设是负袋仅包含负实例,而正袋包含一个或多个正实例。对于某些应用场景,这种不对称的假设可能不合适,因为负袋也包含有代表性的负实例。我们引入了一种新的对称 MIL 框架,将每个袋中的实例与一个属性相关联,该属性可以是负、正或无关。我们通过引入对相关实例数量的控制来扩展相关性的概念。我们开发了一个概率图形模型,该模型结合了上述范例和一种相应的计算效率推理,用于学习模型参数并获得实例级属性学习分类器。所提出的方法在可用的组织病理学数据集上进行了评估,结果令人鼓舞。