Suppr超能文献

基于组学整合的机器学习识别疾病的分子生物标志物

Identifying Molecular Biomarkers for Diseases With Machine Learning Based on Integrative Omics.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2514-2525. doi: 10.1109/TCBB.2020.2986387. Epub 2021 Dec 8.

Abstract

Molecular biomarkers are certain molecules or set of molecules that can be of help for diagnosis or prognosis of diseases or disorders. In the past decades, thanks to the advances in high-throughput technologies, a huge amount of molecular 'omics' data, e.g., transcriptomics and proteomics, have been accumulated. The availability of these omics data makes it possible to screen biomarkers for diseases or disorders. Accordingly, a number of computational approaches have been developed to identify biomarkers by exploring the omics data. In this review, we present a comprehensive survey on the recent progress of identification of molecular biomarkers with machine learning approaches. Specifically, we categorize the machine learning approaches into supervised, un-supervised and recommendation approaches, where the biomarkers including single genes, gene sets and small gene networks. In addition, we further discuss potential problems underlying bio-medical data that may pose challenges for machine learning, and provide possible directions for future biomarker identification.

摘要

分子生物标志物是指某些分子或分子集合,它们有助于疾病或紊乱的诊断或预后。在过去几十年中,由于高通量技术的进步,已经积累了大量的分子“组学”数据,例如转录组学和蛋白质组学。这些组学数据的可用性使得筛选疾病或紊乱的生物标志物成为可能。因此,已经开发了许多计算方法来通过探索组学数据来识别生物标志物。在这篇综述中,我们全面介绍了使用机器学习方法识别分子生物标志物的最新进展。具体来说,我们将机器学习方法分为监督、无监督和推荐方法,其中生物标志物包括单个基因、基因集和小基因网络。此外,我们进一步讨论了生物医学数据中可能对机器学习构成挑战的潜在问题,并为未来的生物标志物识别提供了可能的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验