Division of Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
Methods Mol Biol. 2021;2190:209-228. doi: 10.1007/978-1-0716-0826-5_10.
With rapid advances in experimental instruments and protocols, imaging and sequencing data are being generated at an unprecedented rate contributing significantly to the current and coming big biomedical data. Meanwhile, unprecedented advances in computational infrastructure and analysis algorithms are realizing image-based digital diagnosis not only in radiology and cardiology but also oncology and other diseases. Machine learning methods, especially deep learning techniques, are already and broadly implemented in diverse technological and industrial sectors, but their applications in healthcare are just starting. Uniquely in biomedical research, a vast potential exists to integrate genomics data with histopathological imaging data. The integration has the potential to extend the pathologist's limits and boundaries, which may create breakthroughs in diagnosis, treatment, and monitoring at molecular and tissue levels. Moreover, the applications of genomics data are realizing the potential for personalized medicine, making diagnosis, treatment, monitoring, and prognosis more accurate. In this chapter, we discuss machine learning methods readily available for digital pathology applications, new prospects of integrating spatial genomics data on tissues with tissue morphology, and frontier approaches to combining genomics data with pathological imaging data. We present perspectives on how artificial intelligence can be synergized with molecular genomics and imaging to make breakthroughs in biomedical and translational research for computer-aided applications.
随着实验仪器和协议的快速发展,成像和测序数据以前所未有的速度产生,这对当前和即将到来的大生物医学数据做出了重大贡献。与此同时,计算基础设施和分析算法的空前进步正在实现基于图像的数字诊断,不仅在放射学和心脏病学,而且在肿瘤学和其他疾病中也是如此。机器学习方法,特别是深度学习技术,已经在各种技术和工业领域得到广泛应用,但它们在医疗保健中的应用才刚刚开始。在生物医学研究中,独特的是存在将基因组学数据与组织病理学成像数据集成的巨大潜力。这种集成有可能扩展病理学家的限制和边界,这可能在分子和组织水平上实现诊断、治疗和监测的突破。此外,基因组学数据的应用正在实现个性化医疗的潜力,使诊断、治疗、监测和预后更加准确。在本章中,我们讨论了数字病理学应用中现成的机器学习方法,组织形态学与空间基因组学数据集成的新前景,以及将基因组学数据与病理成像数据相结合的前沿方法。我们提出了人工智能如何与分子基因组学和成像相结合,为计算机辅助应用的生物医学和转化研究带来突破的观点。