机器学习与组学的融合:应用与展望。
Machine learning meets omics: applications and perspectives.
机构信息
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China.
School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.
出版信息
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab460.
The innovation of biotechnologies has allowed the accumulation of omics data at an alarming rate, thus introducing the era of 'big data'. Extracting inherent valuable knowledge from various omics data remains a daunting problem in bioinformatics. Better solutions often need some kind of more innovative methods for efficient handlings and effective results. Recent advancements in integrated analysis and computational modeling of multi-omics data helped address such needs in an increasingly harmonious manner. The development and application of machine learning have largely advanced our insights into biology and biomedicine and greatly promoted the development of therapeutic strategies, especially for precision medicine. Here, we propose a comprehensive survey and discussion on what happened, is happening and will happen when machine learning meets omics. Specifically, we describe how artificial intelligence can be applied to omics studies and review recent advancements at the interface between machine learning and the ever-widest range of omics including genomics, transcriptomics, proteomics, metabolomics, radiomics, as well as those at the single-cell resolution. We also discuss and provide a synthesis of ideas, new insights, current challenges and perspectives of machine learning in omics.
生物技术的创新使得组学数据以惊人的速度积累,从而迎来了“大数据”时代。从各种组学数据中提取内在有价值的知识仍然是生物信息学中的一个艰巨问题。更好的解决方案通常需要一些更具创新性的方法来进行高效处理和有效结果。多组学数据的综合分析和计算模型的最新进展,以一种越来越和谐的方式帮助解决了这些需求。机器学习的发展和应用在很大程度上提高了我们对生物学和生物医学的认识,并极大地促进了治疗策略的发展,特别是精准医学。在这里,我们提出了一个全面的调查和讨论,当机器学习遇到组学时会发生什么、正在发生什么以及将会发生什么。具体来说,我们描述了人工智能如何应用于组学研究,并回顾了机器学习在基因组学、转录组学、蛋白质组学、代谢组学、放射组学以及单细胞分辨率等各个组学领域以及它们之间的界面上的最新进展。我们还讨论并综合了机器学习在组学中的思想、新的见解、当前的挑战和观点。