Ge Qiaoyu, Raza Aikifa, Li Hongxia, Sett Soumyadip, Miljkovic Nenad, Zhang TieJun
Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
ACS Appl Mater Interfaces. 2020 May 13;12(19):22246-22255. doi: 10.1021/acsami.9b22417. Epub 2020 Apr 29.
Condensation on lubricant-infused micro- or nanotextured superhydrophobic surfaces exhibits remarkable heat transfer performance owing to the high condensation nucleation density and efficient condensate droplet removal. When a low surface tension lubricant is used, it can spread on the condensed droplet and "cloak" it. Here, we describe a previously unobserved condensation phenomenon of satellite droplet formation on lubricant-cloaked water droplets using environmental scanning electron microscopy. The presence of satellite droplets confirms the cloaking behavior of common lubricants on water such as Krytox oils. More interestingly, we have observed satellite droplets on BMIm ionic liquid-infused surfaces, which is unexpected because BMIm was used in previous reports as a lubricant to eliminate cloaking during water condensation. Our studies reveal that the cloaking of BMIm on water droplets is theoretically favorable due to the fast timescale spreading during initial condensation when compared to the long timescale required for dissolution of the lubricant in water. We utilize a novel characterization approach based on Raman spectroscopy to confirm the existence of cloaking lubricant films on water droplets residing on lubricant-infused surfaces. The selected lubricants include Krytox oil, ionic liquid, and dodecane, which have drastically different surface tensions and polarities. In addition, spreading dynamics of cloaking and noncloaking lubricants on water droplets show that ionic liquid has the capability to mobilize water droplets spontaneously owing to cloaking and its relatively high surface tension. Our studies not only elucidate the physics governing cloaking and satellite droplet condensation phenomena at micro- and macroscales but also reveal a subset of previously unobserved lubricant-water interfacial interactions for a large variety of applications.
由于具有高冷凝成核密度和高效的冷凝液滴去除能力,注入润滑剂的微纳纹理超疏水表面上的冷凝现象展现出卓越的传热性能。当使用低表面张力的润滑剂时,它能够在冷凝液滴上扩散并将其“包裹”起来。在此,我们利用环境扫描电子显微镜描述了一种此前未观察到的现象:在被润滑剂包裹的水滴上形成卫星液滴的冷凝现象。卫星液滴的存在证实了常见润滑剂(如 Krytox 油)对水的包裹行为。更有趣的是,我们在注入 1-丁基-3-甲基咪唑离子液体(BMIm)的表面上观察到了卫星液滴,这出乎意料,因为在之前的报道中,BMIm 被用作一种润滑剂以消除水冷凝过程中的包裹现象。我们的研究表明,与润滑剂在水中溶解所需的长时间尺度相比,由于初始冷凝过程中快速的时间尺度扩散,BMIm 在水滴上的包裹在理论上是有利的。我们采用一种基于拉曼光谱的新型表征方法,以确认在注入润滑剂的表面上的水滴上存在包裹润滑剂膜。所选用的润滑剂包括 Krytox 油、离子液体和十二烷,它们具有截然不同的表面张力和极性。此外,包裹型和非包裹型润滑剂在水滴上的铺展动力学表明,由于包裹作用及其相对较高的表面张力,离子液体具有自发移动水滴的能力。我们的研究不仅阐明了在微观和宏观尺度上控制包裹和卫星液滴冷凝现象的物理原理,还揭示了一系列此前未观察到的、适用于多种应用的润滑剂 - 水界面相互作用。