Sett Soumyadip, Sokalski Peter, Boyina Kalyan, Li Longnan, Rabbi Kazi Fazle, Auby Harpreet, Foulkes Thomas, Mahvi Allison, Barac George, Bolton Leslie W, Miljkovic Nenad
BP International Limited , 150 W. Warrenville Road , Naperville , Illinois 60563 , United States.
BP plc , Chertsey Road , Sunbury-on-Thames, Middlesex TW16 7LN , United Kingdom.
Nano Lett. 2019 Aug 14;19(8):5287-5296. doi: 10.1021/acs.nanolett.9b01754. Epub 2019 Jul 31.
Vapor condensation is a widely used industrial process for transferring heat and separating fluids. Despite progress in developing low surface energy hydrophobic and micro/nanostructured superhydrophobic coatings to enhance water vapor condensation, demonstration of stable dropwise condensation of low-surface-tension fluids has not been achieved. Here, we develop rationally designed nanoengineered lubricant-infused surfaces (LISs) having ultralow contact angle hysteresis (<3°) for stable dropwise condensation of ethanol (γ ≈ 23 mN/m) and hexane (γ ≈ 19 mN/m). Using a combination of optical imaging and rigorous heat transfer measurements in a controlled environmental chamber free from noncondensable gases (<4 Pa), we characterize the condensation behavior of ethanol and hexane on ultrascalable nanostructured CuO surfaces impregnated with fluorinated lubricants having varying viscosities (0.496 < μ < 5.216 Pa·s) and chemical structures (branched versus linear, Krytox and Fomblin). We demonstrate stable dropwise condensation of ethanol and hexane on LISs impregnated with Krytox 1525, attaining about 200% enhancement in condensation heat transfer coefficient for both fluids compared to filmwise condensation on hydrophobic surfaces. In contrast to previous studies, we use 7 h of steady dropwise condensation experiments to demonstrate the importance of rational lubricant selection to minimize lubricant drainage and maximize LIS durability. This work not only demonstrates an avenue to achieving stable dropwise condensation of ethanol and hexane, it develops the fundamental design principles for creating durable LISs for enhanced condensation heat transfer of low-surface-tension fluids.
蒸汽冷凝是一种广泛应用于传热和流体分离的工业过程。尽管在开发低表面能疏水和微/纳米结构超疏水涂层以增强水蒸气冷凝方面取得了进展,但尚未实现低表面张力流体的稳定滴状冷凝。在此,我们开发了经过合理设计的纳米工程注入润滑剂表面(LISs),其具有超低接触角滞后(<3°),用于乙醇(γ≈23 mN/m)和己烷(γ≈19 mN/m)的稳定滴状冷凝。在一个无不可凝气体(<4 Pa)的受控环境舱中,结合光学成像和严格的传热测量,我们表征了乙醇和己烷在浸渍有不同粘度(0.496 < μ < 5.216 Pa·s)和化学结构(支链与线性、Krytox和Fomblin)的氟化润滑剂的超大规模纳米结构CuO表面上的冷凝行为。我们证明了乙醇和己烷在浸渍有Krytox 1525的LISs上的稳定滴状冷凝,与疏水表面上的膜状冷凝相比,两种流体的冷凝传热系数提高了约200%。与之前的研究不同,我们使用7小时的稳定滴状冷凝实验来证明合理选择润滑剂以最小化润滑剂排放和最大化LIS耐久性的重要性。这项工作不仅展示了实现乙醇和己烷稳定滴状冷凝的途径,还为创建用于增强低表面张力流体冷凝传热的耐用LISs制定了基本设计原则。