Suppr超能文献

使用机器学习预测小儿眼科门诊的候诊时间

Predicting Wait Times in Pediatric Ophthalmology Outpatient Clinic Using Machine Learning.

作者信息

Lin Wei-Chun, Goldstein Isaac H, Hribar Michelle R, Sanders David S, Chiang Michael F

机构信息

Departments of Medical Informatics and Clinical Epidemiology and.

Ophthalmology, OHSU.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:1121-1128. eCollection 2019.

Abstract

Patient perceptions of wait time during outpatient office visits can affect patient satisfaction. Providing accurate information about wait times could improve patients' satisfaction by reducing uncertainty. However, these are rarely known about efficient ways to predict wait time in the clinic. Supervised machine learning algorithms is a powerful tool for predictive modeling with large and complicated data sets. In this study, we tested machine learning models to predict wait times based on secondary EHR data in pediatric ophthalmology outpatient clinic. We compared several machine-learning algorithms, including random forest, elastic net, gradient boosting machine, support vector machine, and multiple linear regressions to find the most accurate model for prediction. The importance of the predictors was also identified via machine learning models. In the future, these models have the potential to combine with real-time EHR data to provide real time accurate estimates of patient wait time outpatient clinics.

摘要

患者对门诊就诊等待时间的认知会影响患者满意度。提供有关等待时间的准确信息可以通过减少不确定性来提高患者满意度。然而,对于在诊所中预测等待时间的有效方法却知之甚少。监督式机器学习算法是用于对大型复杂数据集进行预测建模的强大工具。在本研究中,我们测试了机器学习模型,以基于儿科眼科门诊的电子健康记录(EHR)二级数据预测等待时间。我们比较了几种机器学习算法,包括随机森林、弹性网络、梯度提升机、支持向量机和多元线性回归,以找到最准确的预测模型。还通过机器学习模型确定了预测因子的重要性。未来,这些模型有可能与实时EHR数据相结合,以提供门诊患者等待时间的实时准确估计。

相似文献

1
Predicting Wait Times in Pediatric Ophthalmology Outpatient Clinic Using Machine Learning.
AMIA Annu Symp Proc. 2020 Mar 4;2019:1121-1128. eCollection 2019.
2
Machine Learning for Predicting Patient Wait Times and Appointment Delays.
J Am Coll Radiol. 2018 Sep;15(9):1310-1316. doi: 10.1016/j.jacr.2017.08.021. Epub 2017 Oct 24.
5
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
BMC Med Inform Decis Mak. 2019 Nov 6;19(1):211. doi: 10.1186/s12911-019-0918-5.
6
Data-Driven Scheduling for Improving Patient Efficiency in Ophthalmology Clinics.
Ophthalmology. 2019 Mar;126(3):347-354. doi: 10.1016/j.ophtha.2018.10.009. Epub 2018 Oct 10.
9
Predicting post-stroke pneumonia using deep neural network approaches.
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.

引用本文的文献

2
Prediction of Prednisolone Dose Correction Using Machine Learning.
J Healthc Inform Res. 2023 Feb 15;7(1):84-103. doi: 10.1007/s41666-023-00128-3. eCollection 2023 Mar.
3
Integration of Machine Learning Algorithms and Discrete-Event Simulation for the Cost of Healthcare Resources.
Healthcare (Basel). 2022 Sep 30;10(10):1920. doi: 10.3390/healthcare10101920.
4
Predicting the target specialty of referral notes to estimate per-specialty wait times with machine learning.
PLoS One. 2022 May 12;17(5):e0267964. doi: 10.1371/journal.pone.0267964. eCollection 2022.
5
An alternative to the black box: Strategy learning.
PLoS One. 2022 Mar 18;17(3):e0264485. doi: 10.1371/journal.pone.0264485. eCollection 2022.
6
Ophthalmology Provider Ratings and Patient, Disease, and Appointment Factors.
J Patient Exp. 2021 Aug 9;8:23743735211033750. doi: 10.1177/23743735211033750. eCollection 2021.
7
Evaluation of pediatric ophthalmologists' perspectives of artificial intelligence in ophthalmology.
J AAPOS. 2021 Jun;25(3):164.e1-164.e5. doi: 10.1016/j.jaapos.2021.01.011. Epub 2021 Jun 1.

本文引用的文献

2
Association of the Presence of Trainees With Outpatient Appointment Times in an Ophthalmology Clinic.
JAMA Ophthalmol. 2018 Jan 1;136(1):20-26. doi: 10.1001/jamaophthalmol.2017.4816.
3
Secondary use of electronic health record data for clinical workflow analysis.
J Am Med Inform Assoc. 2018 Jan 1;25(1):40-46. doi: 10.1093/jamia/ocx098.
4
Clinic Workflow Simulations using Secondary EHR Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:647-656. eCollection 2016.
5
Patient Feedback on Waiting Time Displays.
Am J Med Qual. 2017 Jan/Feb;32(1):108. doi: 10.1177/1062860616658974. Epub 2016 Jul 19.
6
Secondary Use of EHR Timestamp data: Validation and Application for Workflow Optimization.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1909-17. eCollection 2015.
7
Wait time as a driver of overall patient satisfaction in an ophthalmology clinic.
Clin Ophthalmol. 2013;7:1655-60. doi: 10.2147/OPTH.S49382. Epub 2013 Aug 20.
8
Improving patient satisfaction through information provision.
Clin Exp Ophthalmol. 2007 Jul;35(5):439-47. doi: 10.1111/j.1442-9071.2007.01514.x.
10
Willing to wait?: the influence of patient wait time on satisfaction with primary care.
BMC Health Serv Res. 2007 Feb 28;7:31. doi: 10.1186/1472-6963-7-31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验